Digitized by the Internet Archive in 2015

Kings College LONDON

Owen Librar
Mancyraph on the fossil reptitio ... Edunuds
A mangrapt of the ecoene mathisca...
184^{9} KCSMD QET61. OWE
2008248326

KING'S COLLEGE LONDON

PALEONTOGRAPHICAL SOCIETY.

MONOGRAPH :
FOSSIL REPTILIA
OF THE
LONDON CLAY.

BY PROFESSORS OWEN AND BELL.
Part I.-Chelonla. 1849.

$$
\frac{k}{11}
$$

PALEONTOGRAPHICAL SOCIETY.

INSTITUTED MDCCCXLVII.

LONDON:
MDCCCXLIX.

MONOGRAPH

ON
 THE FOSSIL REPTILIA
 of tile
 LONDON CLAY.

PART J.
CHELONIA.

BY
PROFESSOR OWEN, F.R.S. F.L.S. F.G.S. \&c.
aND
PROFESSOR BELL, Sec.R.S. F.L.S. F.G.S. \&c.

LONDON:
printed for the paleontographical society.
1849.

ADVERTISEMENT.

When my friend Professor Bell consented to the announcement, by the Paleontographical Society, of a Monograph by himself on Fossil Reptiles of the London Clay, he was not aware of the progress already made in my work on the Fossil British Reptiles. As soon as he saw the proofs of the plates of those from the London Clay he renouneed his intention ; but, on the completion of the arrangement with the Council of the Society for the publication of my work, he kindly consented to allow his name to be associated with mine in the present Monograph, to whieh he has eontributed a very valuable and important share. The aid, however, which Professor Bell has rendered has not ended with the deseriptions which bear his initials. By his careful revisions of those contributed by myself their accuraey has been assured; and I should not have dismissed the sheets containing the detcrminations of the parts of the complex skeleton of the Chelonia, and the nomenclature applicd to them, with the confidence which I now feel, if they had not received the sanction of an anatomist and naturalist who had distinguished himself in a eomparatively carly part of his seientific career, by his beautiful Monograph on the existing species of the Chelonian order of Reptiles.

It only remains to add, that we have mutually eo-operated in ensuring the accuraey of the illustrations, and have been most ably seconded by the experieneed artists Messrs. Dinkel and Erxleben, to whom we beg to offer our best thanks.

Our aeknowledgments to the kind friends who have liberally submitted their speeimens of Eoeenc Chelonia to our cxamination arc expressed in the text, in whieh those speeimens are respectively deseribed.
R. O.

Family-Paludinosa.

PAGE
Genus-Platemys 62
Species - Bullockii 62

- Bowerbankii 66
Genus-Emys 67
Species - testudiniformis 67
- levis 70
- Comptoni 71
- bicarinata 73
- Delabechii 74
- crassus 76

MONOGRAPH

ON THE

FOSSIL REPTILIA OF THE LONDON CLAY.

$$
\begin{gathered}
\text { Order.-CheloniA. } \\
\text { Family-Marina. } \\
\text { Gemus-Chelone. }
\end{gathered}
$$

The majority of the Fossil Chelonians of the Eocene tertiary deposits, defined or described in my 'Report on British Fossil Reptiles,' belonged to the marine division of the order, and to the genus Chelone; and as the specics of this genus depart least from the ordinary reptilian type in the modification of the bones of the trunk, composing the charactcristic thoracic-abdominal case of the ordcr, I propose to commence with them those descriptions of the Chelonian reptiles which fall to my share of the present Monograph.

In order to facilitate the comprchension of the descriptions and figures of the fossil Chelonians, a bricf notice is premised of the composition and homologies of the carapace and plastron, or roof and floor, of that singular portable abode, with which the reptilcs of the present order have been cndowed in compensation for their inferior powers of locomotion or other modes of escape or defence.

In the marine species of the Chelonian order, of which the Chelone mydas may be regarded as the type, the ossification of the carapace and plastron is less complete, and the whole skelcton is lighter than in those species that live and move on dry land : but the head is proportionally larger-a character common to aquatic animals,and being incapable of retraction within the carapace, ossification extends in the direction of the fascia, covering, the temporal muscles, and forms a second bony covering of the cranial cavity: it is interesting to obscrve, however, that this accessory defence is not formed by the intercalation of any new bones, but is due to exogenous growth from the frontals (11), parietal (τ), postfrontals (12), and mastoids (8, see T. I, T. III, T. XV).

The bony carapace is composed externally of a series of median and symmetrical pieces (fig. $1, c h, s 1-s 11, p y)$, and of two serics of unsymmetrical picces ($p / 1-8, m_{1-12}$) on each sidc. The median pieces have been regarded as lateral expansions of the summits of the upper vertebral (neural) spines," the median lateral pieces as similar

[^0]developments of the vertebral ribs (pleurapophyses),* and the marginal pieces as the homologues of the sternal ribs (hæmapophyses). \dagger

I must refcr the reader to my Memoir, communicated to the Royal Society, for the facts and arguments which have led me to regard these pieces, as dermal ossifications, homologous with those that support the nuchal and dorsal epidermal scutes in the crocodilc. Most of the bony pieces of the carapace are, however, dircetly continuous, and connate, \ddagger with the obvious elements of the vertebræ, which have been supposed exclusively to form them by their unusual development; the median pieces have accordingly bcen called "vertebral plates," and the medio-lateral pieces "costal plates." I retain the latter namc, although with the understanding and conviction that they arc cssentially or homologically distinct parts from the vertebral ribs or pleurapophyses with which they are connate and more or less blended. But, with regard to the term "vertebral" plate, since the ribs (costa) are as cssentially elements of the vertebra as the spinous processes themselves, I have been in the habit, in my Lectures, of indicating the median serics by the term " ncural plates," which term has the further advantage of removing any ambiguity from the descriptions that might arise from their being mistaken for the superincumbent cpidermal shields, which are likewise called " vertebral platcs" in some English works. § The term " marginal" is retained for the osseous plates forming the periphery of the carapace; but the median and symmetrical ones, which seem also to begin and cnd the "ncural" scries, are specified, the one by the term "nuchal platc," the other by that of "pygal plate." The "neural plates" are numbered as in the classical Monograph of Bojanus.||

In the subjoined woodcut of the carapace of the loggerhcad turtle (Chelone caouanna) (fig. 1), ch is the muchal plate; $s 1$ to $s 11$ the neural plates; plı to pls the costal plates; and m_{1} to m_{12} the marginal plates. The carapace is impressed by the superimposed epidermal scutes or shiclds, which consist of a median series, called "vertebral scutes" v_{1} to v_{5};

* Ibid. p. 211. Rathké has recently supported this determination by arguments drawn from the mode of development of the carapacc. See 'Annales des Sciences Naturelles,' Mars, 1846 ; and 'Ueber die Entwickelung der Schildkröten,' 4to, 1848, where he says, p. 105 :-"Ausser deu Rippen und den horizontal liegenden Tafehn, zu welchen sich die Dornfortsätze des zweiten und der sechs folgenden Rückenwirbel ausbilden, dienen bei den erwachsenen Schildkröten zur Zusammensetzung des Rückenschildes noch cine oder mehrere Knochenplatten," viz. the "marginal plates." I have shown how Rathké was deccived by over-estimating the character of connation, in my 'Observations on the Development of the Carapace and Plastron of the Chelonians,' which conduct to a different conclusion to that at which Cuvicr and Rathké have arrived. (Philosoph. Transactions, 1849.)
+ Geoffroy, Annales du Museum, tom. xiv (1809), p. 7.
\ddagger This term is used in the definite sense explained in my work on the 'Archetype of the Vertebrate Skeleton' (8vo, V. Voorst, p. 49), as signifying those essentially different parts which are not physically distinct at any stage of development; and in contradistinction to the term "conflucnt," which applies to those united parts which were originally distinct.
§ See Griffiths's translation of Cuvier, vol. ix, Synopsis of Reptilia, p. 6-"fifth vertebral plates prominent."

Anatome Testudinis Europææ, fol. 1821, tab. iii and iv.
and of a lateral series of " costal scutes ;" there is also a peripheral series of "marginal scutes" corresponding with and impressing the marginal plates. The nuchal plate (c / l) is remarkable for its breadth in all Chelonia, and usually sends down a ridge from the middle line of its under surface, which is attaehed by ligament to the summit of the neural arch of the first dorsal vertebra. The first true neural plate, $s 1$, is much narrower, and is connate with the summit of the neural spine of the second dorsal vertebra; the suecceding vertebral neural plates, $s 2-s 8$, have the same relations with the succeeding neural spines, but the ninth, tenth, and eleventh, like the nuchal (c/r) and pygal ($p y$), plates are independent ossifications in the substanee of the derm. The costal

Fig. 1.

Carapace of the Loggerhead Turtle (Chelone coouama). pieces of the earapace are supra-additions to eight pairs of pleurapophyses or vertebral ribs, those, viz. of the second to the ninth dorsal vertebre inclusive. The slender or normal portions of the ribs project freely for some distanee beyond the expanded and eonnate portions (" costal plates" of the carapace), along the under surface of which the rib may be traced, of its ordinary breadth, to the neck and head, which liberates itself from the costal plate to articulate to the interspace of the two eontiguous vertebral bodies, (centrums), to the posterior of which sueh rib properly belongs.

The woodeut (fig. 2) illustrates this structure: ch shows the inner side of the nuchal plate; c_{1} is the first rib, articulated to the fore part of the body of the first dorsal vertebre ; $p l_{1}$ is the first rib of the carapace (the second rib of the dorsal series), connate with the first costal plate; $p / 2$ to $p / 8$, are the

Fig. 2.

Imner view of carapace of the Loggerhead Turtle (Chelone caouanna). sueceeding ribs and costal plates of the earapace. The heads of the ribs articulate to
the interspaces between their own vertebral body, and that of the preceding vertebra. The tenth vertebra supports a short pair of ribs in Chelone and in Emys, but not in Trionyx; and this vertebra is commonly reckoned as a "lumbar" one. The eleventh and twelfth vertebre have short and thick ribs, which abut against the iliac bones, and they are regarded as forming the sacrum. The remaining vertebre belong to the tail, and are "caudal." The costal plates articulate with each other, and with the neural plates by fine dentated suturcs. The free extremities of the ribs are implanted into sockets of those marginal plates which are opposite to them. The 1st, 2d, 3d, and 10th, are not so articulated in the loggerhcad turtle. But all the marginal plates articulate with each other, and with the nuchal (c / i) and pygal ($p y$) plates by sutures.

The osseous basis of the plastron consists of nine pieccs, one single and symmetrical, the rest in pairs.

The median piece, s, is the entosternal; the anterior pair, es, is the episternal; the second pair, hs, the hyosternal; the third pair, ps, the hyposternal; and the posterior pair, $x s$, the xiphisternal.

With regard to the nature or homologies of these bones, thrce views have bcen

Bones of the plastron of the Loggerhead Turtle (Chelone caouanna). taken. The one generally adopted, on the authority of Cuvier, Bojanus, and Geoffroy St. Hilairc, is, that the nine bones of the plastron are subdivisions of a vastly expanded sternum, or breast-bone; the second view is, that these subdivisions of the sternum are enlarged by combination with ossifications of the integument ;* and the third view, in which Rathke stands alone, is, that they are exclusively dermal bones, and have no homologues in the endoskeleton of other vertebrata. \dagger

Since this opinion is given as the result of that celebrated embryologist's observations on the development of the Chelonian reptiles, I have tested it by a series of similar researches on the embryos and young of the Chelone mydas and Testudo indica, and have been led by them to conclusions distinct from any of the three theories above cited.

The sternum, like the carapace, is, without doubt, a compound of connate, endoskeletal and exoskeletal pieces; but the endoskeletal parts are not exclusivcly the homologues of the sternum. For the details of the observations, and the special arguments on which these conclusions are founded, I must refer to my paper in the 'Transactions of the Royal Society,' 1849; the homologies of the endoskeletal parts of the plastron will require a brief illustration here from comparative anatomy.

[^1]Geoffroy St. Hilaire, whose views are generally adopted, was guided in his determination of the parts of the plastron by the analogy of the skeleton of the bird: whieh analogy may be illustrated by the subjoined diagrams of corresponding segments of the thorax of a bird (fig. 4) and of a tortoise (fig. 5). In both figures c is the centrum or vertebral body; $n s$ the neural areh and spinc ; compressed in the bird, depressed and laterally expanded, aeeording to Geoffroy, in the tortoise ; $p l$ the pleurapophysis, or vertebral rib, expanded in the tortoise, and with its broad tubercle artieulating with the expanded spine ; $h, l \prime$ in fig. 5 , answers to l in fig. 4 , and is the hæmapophysis (sternal rib, or ossified cartilage of the rib) ; h, his in fig. 5 , is hs in fig. 4, i. c. exelusively a sternum, with the entosternal picce, his', developed horizontally in the tortoise, and vertieally in the bird. The primad facie simplieity of this view has imposed upon most comparative anatomists: and yet there are other vertebrate animals more nearly allied to the Chelonia than birds, and with whieh, thercfore, comparison should have been instituted before general eonsent was yielded to the Gcoffroyan hypothesis.
 If, e. g. we take the segment of a erocodile's skeleton (fig. 6) eorresponding with that of the tortoise (fig. 5), the eomparison will yield the following interpretation: in both figures c is the ecntrum: ns the neural areh and spine, with d the diapophysis; sc a median dermal bony plate (connate with $n s$ in the tortoisc); $p l$ the pleurapophysis: sc sc lateral dermal bony plates (connate with $p l$ in the tortoise) ; h, h^{\prime} in fig. 5 , answers to l^{\prime} in fig. 6 , an intercalated, semi-ossifice piece between $p l$ and l in the crocodile; h, h / s in fig. 5 , answers to h, the hæmapophysis in the erocodile; and his in

Thoracic segment of the skelcton of a Cromalils. fig. 5 , exelusively represents $/ / s$, the sternum in the croeodilc.

Such a comparison, in my opinion, guides us to a trucr view of the homologies of the thoracic-abdominal bony case of the Chelonians, especially with regard to the lateral or parial pieces of the plastron, than the comparison exclusively relied on by Geoffroy St. Hilaire. The Plesiosaurns, by its long and flexible neck, small head, expanded coracoid and pubis, and flattencd bones of the paddles, comes much nearer to the turtle than the crocodile does; and its abdominal ribs, or hæmapophyses, are more developed than in the crocodiles; a comparison of the ventral surface of the skeleton, such as that figured by Dr. Buckland, in his 'Bridgewater Treatise,' vol. ii, pl. 18, fig. 3, will show how clearly those abdominal ribs would correspond with the hyostcrnals and hyposternals of the turtle, if they had coalesced together at their middle parts, leaving their outer and inner extremitics free.

With regard to the marginal pieces $m_{1}-m_{12}$, figs. 1 and 2, although the comparisons illustrated by figs. 4, 5, 6, show that they answer rather to the intercalated piece h^{\prime} in the crocodile than to the entire sternal rib h in the bird; yet the phenomena of their development demonstrate that they are exclusively bones of the dermal skeleton, retaining their freedom from anchylosis with the endoskeletal elements, like the nuchal, pygal, and last three neural plates (ch, $p y, s 9, s 10$, and $s 11$, fig. 1). This insight into their true nature tcaches why they do not correspond in number with the vertebral ribs or plcurapophyses ($p l_{1}-p l 8$, fig. 2). In the loggerhead turtle, for example, the first thrce and the tenth ($m 1, m 2, m 3$, and $m 10$) have no corresponding pleurapophyses articulating with them; and if even c_{1} be supposed to correspond to m3, there are no rudiments of ribs answering to $m 1$ and $m 2$. The marginal plates are not constant in number; the Chelone mydas has two less than the Chelone caouanna has. Some specics of Trionyx (Cryptopus, Dum. and Bibron) have a greater number, but of smaller and less regular size, confined to the posterior part of the limb of the carapace; in other specics of Trionyx (Gymnopns, Dum. and Bibron), and in Sphargis, the marginal part of the carapace retains its embryonic condition in all Chelonia, as a stratum of cartilaginous cells in the substance of the derm, forming the thickened, flexible border of the earapace.

The rudiments of the hyosternals and hyposternals have originally the form of sternal or abdominal ribs; extend transverscly, and rise at their outcr extremities to join those of the first and sixth pair of vertebral ribs, completing the hæmal, or inferior vertebral arch, without the interposition of any of the marginal pieces, which are merely applied to the outer sides of the hrmapophysis or sternal ribs. The expansion of the parts of the plastron, especially in the fresh-water and land tortoiscs, is due chiefly to the ossification of a layer of cartilage-cells in the substance of the derm, which ossified plates are connate with the morc internal elements of the plastron, representing the sternum and sternal ribs. In the following descriptions of the fossil Chelonia, the terms ' entosternal, episternal, hyosternal, hyposternal,' and ' xiphisternal,' will be used as absolute designations of the combined endoskelctal and exoskeletal bones of the plastron, without implying assent to the hypothesis that first suggested those names to Geoffroy St. Hilaire.

The scapular and pelvie arehes, and the bones of the extremities of the Chelonia, are described and figured in the 'Ossemens Fossiles' of Cuvier ;* where, also, the figures of the modifications of the earapaee and plastron, in the fresh-water and land tortoises, will suffice for the purpose of ulterior comparisons with the fossils deseribed in the present work, if they be undcrstood according to the homologics above discussed, and which arc illustrated by the figurcs 1 and 2 of the earapaee, and fig. 3 of the plastron of the Chelone caouanna.

With regard to the more immediate subjects of the present Monograph, it must be admitted that the important gencralizations of Cuvier and Dr. Buckland \dagger have been confirmed, but not materially extended, by subsequent observations on the remains of reptiles of the Chelonian order. Cuvier, after admitting that his results in regard to the tortoises were not so precise as those relating to the eroeodiles, sums up his chapter on the fossil Cheloniu in the following words: "Toutefois nous avons pu nous assurcr que les tortues sont aussi anciennes dans le monde que les eroeodiles; qu'elles les aecompagnent génćralcment, et que le plus grand nombre de leurs débris appartenant à des sous-genres dont les cspèees sont propres aux eaux douecs ou à la terre ferme, clles eonfirment les conjectures que les os de crocodiles avoient fait naître sur l'existence d'iles ou de continens nourissant des reptilcs, avant qu'il y ait eu des quadrupèdes vivipares, ou du moins avant qu'ils aient été assez nombreux pour laisser une quantité de débris comparable à ceux des reptiles." \downarrow

Dr. Buckland also statcs, in general but preeise terms, that " the Chelonian reptiles eamc into existencc nearly at the same time with the order of Saurians, and have eontinucd coextensively with them through the secondary and tertiary formations unto the present time. Their fossil remains present also the same threefold divisions that exist among modern Chelonia into groups, respeetively adapted to live on land, in fresh watcr, or the sea." \$

The remains of sea turtles (Chelone) have becı reeognised in the Musehelkalk, the Wealden, the lower cretaccous formation at Glaris, and the upper chalk-beds at Maestricht. Figures of Chelonites, as that in the Frontispiece to Woodward's 'Synoptieal Tablc of British Organic Remains,' and in König's 'Ieones Seetilcs' (pl. xviii, fig. 232, a and b), have been published; but no true marine Chelonian, from Eoeene strata, had been scientifieally detcrmined prior to the communication of my Paper on that subjcet to the Geologieal Society of London.|| All the Chclonites from Shcppey, deseribed and figured in the last cdition of Cuvier's 'Ossentens Fossiles,' for'

[^2]example, are referred to the fresh-water genus Emys; and the statement in the earlier edition of the 'Ossemens Fossiles,' that the greater part of the remains of Chelonian reptiles belong to the fresh-water or terrestrial genera, is repeated.

The aim of the Memoir, communicated to the Geological Society in December, 1841, was to show that the conclusion deduced by Cuvier, from an imperfect carapace from Sheppey, which might probably have belonged to a species of Emys, had been unduly extended to other Chelonites, which undoubtedly belonged to the marine genus Chelone; and that this genus was represented, in the Eocene strata, by at least six species; the remains of five of which were from the London Clay at Sheppey, and those of a sixth were tolerably abundant in the cliffs near Harwich.

In the carapacc of the fossil Chelonian from Sheppey, communicated by Mr. Crowe, of Faversham, to Cuvier, and figured in the 'Ossemens Fossiles' (tom. v, part 2, pl. xv, fig. 12), the author of that great work conceived that all the characters of the genus Emys were perfectly recognisable.

He points out the proportions of the neural plates, which are as long as they are large; and in the figure they are represented of nearly a quadrate form, and not rhomboidal.

The fiftli neural plate in the fragment figured (probably the eighth) is separated from the sixth (ninth) by a point, which is made by the mesial ends of the fifth (probably the seventh) pair of costal plates; a structure which Cuvier says slightly recalls what he had observed in the Jura Emys of Soleure.*

But Cuvier admits that the neural plates (plaques vertébrales) are narrower than those of existing Eimydes ; and that the equal breadth of the ribs is a character common to the Chelones with the Emydes.

Now, in reference to the carapace figured by Cuvier, it is to be observed, that the margins arc wanting; and that the broad conjoined portions of the costal plates are not longer than they might have been, had the fossil belonged to a turtle (Chelone) ; and, consequently, that there is no proof that they were united together by suture throughout their whole extent, as in the Emydes; but that they might have terminated in narrow tooth-like processes, as in the Chelones.

The narrowness of the neural plates is a character which, with their smoothness, undoubtedly approximates the fossil to the Chelones; and, without intending to affirm that the fossil in question does not belong to the family Emydida, which unquestionably existed at the time of the deposition of the Sheppey clay, its determination appears to me to be much less decisive than might be inferred from the remarks in the 'Ossemens Fossiles.'

[^3]Mr. Parkinson describcs the plastron of a Sheppey Chelonite,* in which the hyosternal and hyposternal picces are not united, but leave a vacancy in the middle, which he conjectured may have been filled up by membrane. This spccimen must have belonged to a specimen at least four inches in length, exclusive of the head and neck. But Cuvier supposes that it may, neverthcless, have belonged to an Emys; and that the vacancy of the bony sternum merely indicated the nonage of the individual. \dagger

The grounds on which Cuvier refers to the genus Emys, the imperfect and dislocated carapace and plastron of M. Bourdet's Sheppcy Chelonite, \downarrow are not detailed; but it is evident that the hypostcrnals in that specimen are in contact at the posterior moiety of their median margins only; and that the margins recede anteriorly, lcaving a median interspace; which, as the plastron is ncarly a foot in length, can hardly be attributed to the immature state of the individual. And if, as Cuvier supposes, this specimen belongs to the same species as those in the collections of Messrs. Crowe and Parkinson, the same objection to their bclonging to a fresh-water tortoise holds good, as to the one figured by M. Bourdet.

The question of the referencc of these Eocene fossils to the fresh- or sea-water families of the Chelonian order, seems to me to admit of the safest detcrmination by examining the crania of the Sheppey Chclonites; since the differences in the extent to which the temporal fosse are protected by bonc, and in the proportions in which the bones enter into the formation of that covering, are strongly marked in the genera Emys and Chelone.

But herc Cuvier appears to have been unusually biassed in favour of the Emydian nature of the Sheppey fossils; for in reference to the cranium, figured by Mr. Parkinson, the affinitics of which to the turtle's skull will be presently pointed out, Cuvier obscrves : "clle est probablement aussi d'unc Emydc, bien qu’elle participe des caractères de Tortucs de Mer, par la manièrc dont le parictal recouvre sa tcmpe; mais nous avons vu que l'Emys expansa diffère très peu de Tortucs de Mer à cet égard, et la partic antéricure de la têtc fossilc resscmble d'avantage à celle d'unc Emyde qu' à cclle d'une Cheloncé, surtout par le peu de largcur dc l'intervalle des yeux." $\$$

Now the most striking difference between the temporal bony vault of the Emys expansa and that of any known species of Chelone, is scen in the diminutive size of the post-frontals in this exceptional case among the Emydes, as contrastcd with their large size and actual extension over the temporal fosse in the Cleelones:-and this diffcrence is accompanied by a proportional diminution in the breadth of the parietals in the true marine turtles.

[^4]But the figure in Parkinson's work gives clearly the latter character; whence also we may infer that it agreed more with the Chelones also in the size of the postfrontals; although the anatomy of the skull is too obscurely delincated to demonstrate this fact.

The following important affinities are, however, unquestionably indicated in Parkinson's figure :-first, the large size of the orbits, which are nearly six times greater than those of the Emys expansa; secondly, their more posterior and lateral position; and thirdly, the greater breadth of the interorbital space: in all which characters the Sheppey fossil closely resembles the true Chelones, and differs from the only known species of Emys (Podocnemys) expansa, in which the temporal openings are protected by a bony roof.

That fresh-water tortoises have left their bony cuirasses in the Sheppey clay, will be subsequently shown; but the evidence of the genus Emys, adduced by Cuvier, is incompetent to prove their cxistence; and, it may be affirmed, that of the fossils cited by the founder of Palæontology, some, with great probability, and others with certainty, are referable to the marine genus, Chelone.

Without further discussing the question as regards these evidences, I shall procced to describe the specimens from Sheppey which I have mysclf had the opportunity of examining; and shall commence with those which belong undoubtedly to the marinc family.

Chelone breviceps. Owen. Tabulæ I and II.
Proceedings of the Geological Society, December 1, 1841; Report on British Fossil Reptiles, Trans. British Association, 1841, p. 178.
Syn. Eifys Parkinsonii. J. E. Gray.
- de Sheppey. II.v. Meyer (?).
Chelone antiqua. Kicenig (?).

The first of the Chelonites, which led me to the recognition of this species, was a nearly perfect cranium from Sheppey (Tab. I, figs. 1-4), wanting only the occipital spine, and presenting a strong and uninterrupted roof, cxtended posteriorly from the parietal spine on each side $(7,7)$, over the temporal openings to the mastoids $(8,8)$; and formed anteriorly by a great devclopment of the posterior frontals (22).

This unequivocal testimony of the marine genus of the fossil, is accompanicd by similar evidence afforded by the large size and latcral aspect of the orbits, the postcrior boundary of which extends beyond the anterior margin of the parictals; and by the absence of the deep emargination which separates the superior maxillary from the tympanic bone in the fresh-water tortoises, and especially in the Podocnemys expansa.

In general form, the skull of the present species of Sheppey Chelone rescmbles that of the Chelone mydas, Brongn.: but it is relatively broader; the prefrontals (14) are
less sloping, and the anterior part of the head is more vertically truncate. The orbits are relatively larger, and extend nearer to the tympanic cavity. The frontals (11) enter into the formation of the orbits in rather a larger proportion than in Chelone mydas. In the Chelone caouanna* they are wholly excluded from the orbits.

The trefoil shape of the occipital tubercle is well marked (fig. 4); the depression in the basioccipital, bounded by the angular pterygoid ridges, is as deep as in most true turtles (fig. 3); the lateral borders of the expanded parietals are united by a straight suture along a great proportion of their extent to the large postfrontals.

These proportions are reversed in the Podocnemys expansa, in which the similarly expanded plate of the parietals is chiefly united latcrally with the squamosal and tympanic bones. In other frcsh-water tortoises the parietal plate in question does not exist.

The same evidence of the affinity of the Sheppey Chelonite in question to the marine turtles, is afforded by the base of the skull (fig. 3) ; the basioccipital (1) is deeply excavated; the processes of the pterygoids (24), which extend to the tympanic pedicles, are hollowed out lengthwise: the palatal processes of the maxillary and palatine bones are continued backwards to the extent which characterises the existing Chelones; and the posterior or internal opening of the nasal passages, is, in a proportional degree, carried further back in the mouth. The lower opening of the zygomatic spaces is wider in the present Sheppey Chelonite, than in Podocnemys expansa.

The cxternal surface of the cranial bones in the fossil is roughened by small irregular ridges, depressions, and vascular foramina, which give it a wrinkled or shagreen-like charactcr.

The following are dimensions of the specimen described:

			Inches.	Lines.
Length of cranium from the occipital condyle			2	9
Breadth of cranium across the malars (26)			2	7
Antero-posterior diameter of orbit			1	0

The lower jaw, which is preserved in the present fossil, likewisc exhibits two characters of the marine turtles ; the dentary piece (32), e. y. forms a larger proportion of the lower jaw than in the land or fresh-water tortoiscs. The joint of the rami is completely obliterated at the symphysis, which is not longer or larger than in Chelone mylas.

The species represented by this fossil, which is preserved in the British Museum, and by a vcry similar one in the Hunterian Collcction, is sclected for the first of the Eocene Chclonians to be described in the present Monograph, because it is one of the few with which the characters of the carapace and plastron can with certainty be associated with those of the cranium.

[^5]In the rich collection of Sheppey fossils, belonging to J. S. Bowerbank, Esq. F.R.S. there is a beautiful Chelonite (Tab. II, figs. 1, 2) including the carapacc, plastron, and the cranium, which is bent down upon the fore part of the plastron; and which, though mutilated, displays sufficient characters to establish its specific identity with the skull of the Chelone breviceps just described. Both the carapace and plastron present the same fincly rugous surface externally as the cranium ; in which character we may perceive a slight indication of affinity with the genus Trionyx.

The carapace (T. II, fig. l) is long, narrow, ovate, widest at its anterior half, and tapering towards a point posteriorly ; it is not regularly convex, but slopes away, like the roof of a house, from the median line (fig. 3), resembling, in this respect, and its general depression, the carapace of the turtlc Chelone mydas. There are preserved the nuchal plate (fig. l, ch) with ten of the neural plates ($n 1-n i 0$), only the cleventh and pygal platcs being wanting. The eight pairs of costal plates ($p l_{1}-p l_{8}$) are also present, with sufficient of the narrower tooth-like cxtremities of the six anterior pairs of ribs, to determine the marine character of the fossil, which is indicated by its general form..*

The nuchal plate (fig. 6, ch) is of a transversely oblong form, with the anterior margin gently concave. Its antero-posterior diameter, or length, is ten lines; its transverse diameter, or breadth, is two inches. The latcral margins are bounded by two lincs mecting at a slight angle; to the anterior one, the first of the marginal plates, m_{1}, is attached; the posterior linc bounds part of the vacant interspace between the first costal plate $\left(p l_{1}\right)$, and the anterior marginal platc. The presence of this plate would prove for the genus Chelone as against Trionyx, were the characters of the cranium, the impressions of the vertebral scutes, and the sternum wanting. The nuchal plate in the Emydes is hexagonal, and nearly as long as it is broad.

The Chelonite from the tertiary beds near Brussels, figured by Cuvier, \dagger has the muchal plate of nearly the same form as the present specimen from Sheppcy.

The neural plates in the Chelone breviceps are as narrow as in the Chelones generally; and as in the Brussels Chelonite above cited.

The first neural plate (81 , fig. l) is four-sided ; the rest, to the eighth ($s 8$), arc hexagons of a more regular figure than in the existing Chelones, and are articulated to more equal shares of the contiguous alternate costal plates ($p l_{1}-p l s$).

The first costal plate $\left(p l_{1}\right)$ is directed morc outwards, does not incline backwards, as in recent Chelones, and its anterior angle is less truncated than in them. (See fig. 1, p. 3.)

The length of the second costal plate ($\mu / 2$) is onc inch, nine lines; more than half of the narrow terminal extremity of the connate rib is preserved; the proportions of

[^6]the remaining costal plates correspond with those of the Chelone mydas, and Chel. саоиаппа.

The last pair of costal plates ($p 78$) articulates with the eighth, ninth, and tenth neural plates, but does not overlap or supersede any of them.

Not any of the costal plates articulate with those of the opposite side, so as to interrupt the series of vertebral plates, as in the carapace of the Chelone caouanna (fig. l, p. 3), as in Mr. Crowe's Sheppey Chelonite, figured by Cuvier (tom. cit. pl. xv, fig. 12) ; and as is shown in the view of the concave surface of the Brussels species (tom. cit. pl. xv, fig. 16).

The ninth neural plate (fig. 1, s9) is the narrowest, as in the Chelones, and as in the Brussels Chelonitc, figured by Cuvier, in loc. cit. pl. xiii, fig. 8, instead of being suddenly expanded, as in most Emydes.

The tenth neural plate ((10) expands to a breadth equal with its length; the eleventh and pygal plates, as already observed, are wanting in the fossil.

The vertebral or median ends of the costal plates present a modification of form, corrcsponding with that of the interspaces of the neural plates to which they are articulated. Only the first pair ($p l_{1}$) present that form which characterises all but the last pair in the existing Chelones, and in the Brussels Chelonite; viz., a straight line with the postcrior angle cut off; the rest being terminated by two nearly equal oblique lines, meeting at an open angle, as shown in Tab. II, fig. 1, pla-pl7.

This charactcr would serve to distinguish the Chelone breviceps, if only a portion of the carapace, including the vertebral extremity of a rib, were preserved. The free extremities of the ribs are thicker in proportion to the costal plates, than in the Chelone caouanna, or the Chel.mydas; and more resemble, in this respect, those of the Chel. imbricata, the spccies characterised by the size and beauty of the horny scutes, commonly called " tortoise-shell."

More or less completc impressions of the five horny vertebral scutcs ($v_{1}-v_{j}$), and of four costal scutes on each side of the vertebral ones, show the forms and proportions of these charactcristic parts, and especially of the median series, notwithstanding they were among the soluble and perishable elements of this ancient turtle of the Thames.

The hexagonal vertcbral scutes are characterised by the near equality of their sides, and the angle of about 100°, at which the two outer sides mect.

The anterior border of the first vertebral scute, v^{1}, has crossed and impressed the nuchal plate, $c h$, near its anterior border ; this scute has covered the rest of the nuchal plate, and more than half of the first neural plate. The second vertebral scute, v^{2}, includes the rest of the first neural plate, the whole of the second, and almost the whole of the third neural plate. The third vertebral scute, v^{3}, includes the hind border of the third neural plate, with the whole of the fourth and fifth neural plates. 'The fourth vertebral scute includes the sixth and seventh, and very nearly the whole of the eighth neural plates, and the outer angles of this scute terminate over the suture between the sixth and seventh costal plates.

The plastron of the Chelone breviceps (Tab. II, fig. 2), although more ossified than in existing Chelones, yet presents all the essential eharaeters of that genus. There is a eentral vaeuity left between the hyosternals ($k s$) and hyposternals ($p s$); but these bones differ from those of the young Emys in the long pointed proeesses whieh radiate from the two anterior angles of the lyosternals ($/ s$), and the two posterior angles of the hyposternals ($p s$).

The xiphisternals ($x s$) have the slender elongated form, and oblique union by reeiproeal gomphosis with the hyposternals ($/ \mathrm{hs}$), which is eharaeteristie of the genus Chelone.

The posterior extremity of the right episternal ($e s$) presents the equally eharaeteristie, slender pointed form.

With these proofs of the modifieation of the plastron of the present fossil aecording to the peeuliar type of the marine Chelones, there is evidenee, however, that it differs from the known existing speeies in the more extensive ossifieation of the component pieees; thus the pointed rays of bone extend from a greater proportion of the margins of the hyosternals and hyposternals; and the intervening margins do not present the straight line at right angles to the radiated proeesses.

In the Chelone mydas, and Chel. caonanna (fig. 3, p. 4), for example, one half of the external margin of the hyosternal and hyposternal, where they are eontiguous, are straight, and intervene between the radiated proeesses, whieh are developed from the remaining halves, while in the Chelone breviceps, about a sixth part only of the corresponding external margins are similarly free, and there form the bottom, not of an angular, but a semieireular interspaee.

The radiated proeesses from the inner margins of the hyosternals and hyposternals, are eharaeterised in the Chelone breviceps by similar modifieations, but their origin is rather less extensive; they terminate in eight or nine rays, slorter, and with intervening angles more equal than in existing Chelones. The xiphisternal piece, $x s$, reeeives in a noteh the outermost ray or spine of the inner radiated proeess of the hyposternal, as in the Chelones, and is not joined by a transverse suture, as in the Emydes, whether young or old.

Subjoined are dimensions of the plastron of Mr. Bowerbank's fossil :

The bones of the seapular areh, especially the coraeoid, Cuvier has shown to afford distinetive characters of the natural families of the Chelonia; but the Eocene Chelonites described by Cuvier, did not yield him this opportunity of thus testing their affinities. In the Chelone breviceps here deseribed, the left eoraeoid (52 , fig. 2) is preserved in nearly its natural position; it is long, slender, symmetrieal; eylindrical near its humeral
extremity ; flattened, and gradually expanded from its humeral third, to its sternal end, whiich is relatively somewhat broader than in the Chelone mydas and Chelone caouanna.

	Iuch,	Lines
Its length is	1	6
Breadth of sternal end	0	7

The characters thus afforded by the cranium, carapace, plastron, and by one of the bones of the antcrior extremity, prove the present Sheppey fossil to belong to a true sea turtle; and at the same time most clearly cstablish its distinction from the known existing species of Chelone.

On account of the shortness of the skull, especially of the facial part and of that which intervenes between the orbit and ear, compared with the brcadth of the skull across the mastoids, I have proposed to name this extinet species, Chelone breviceps."

By the characteristic shape of the median extremitics of the costal plates of the carapace, I have been able to determinc some fragmentary Chelonites which have afforded better ideas of the size of the species represented by Mr. Bowerbank's more complete but immature specimen of Chelone breviceps.

A portion of the carapace of the Chelone breviceps, including the fourth, fifth, sixth, and part of the third and seventh neural plates, with a considerable proportion of the third, fourth, fifth, and sixth costal plates, is preserved in the museum of Mr. Robertson, of Chatham. The characters of the rugous surface of thesc bones, and of the equalsided angles by which the costal plates articulate with the neural plates, do both, and especially the latter, point out the species to which the present fragment belongs. It has formed part of an individual double the size of the specimen above described, and figured from Mr. Bowerbank's collection, and therefore it had a earapace sixteen inches in length.

Although the costal plates have been continued further along the ribs than in the younger example, the more complete state of the sixth rib, in Mr. Robertson's specimen, shows that they retained their longitudinally-striated, tooth-like extremities, which, in the sixth rib, is two thirds of an inch in length; the length of the expanded part being four inches, and its breadth one inch nine lines. The internally prominent part of the rib is much less developed than in Chelone planimentum, and Chelone crassicostata, afterwards to be described. The right hyosternals and hyposternals are present, and they likewise preserve the character of the Chel. Dreviceps in their rugous surface and minor breadth, as compared with those parts in the Chelone longiceps, the extinct species next to be described.

Besides the specimens above described, on which the present extinct specics of turtle

[^7]has been established, remains of the Chelone breviceps are preserved in the Hunterian Museum, and in that of my esteemed friend and coadjutor, Professor Bell, S.R.S.

I know no other loeality of the speeies than that of Sheppey, in Kent.

Chelone longiceps. Owen. Tab. III, IV, and V.
Proceedings of Geological Society of London, December 1, 1841, p. 572. Report on British Fossil Reptilia, Trans. British Association, 1841, p. 177.

The seeond speeies of Chclone, from the Eoeene clay at Sheppey, whieh I originally reeognised and defincd by the fossil skull, Tab. III, differs more from those of existing Chelones by the regular tapering of that part into a prolonged pointed muzzle, than does the Chclone breviceps by its short and anteriorly-truneated eranium.

The surfaee of the eranial bones is smoother than in the Chel. breviceps; whilst their proportions and relations prove the marine eharacter of the present fossil as strongly as in that species.

The orbits (Tab. III, figs. 1 and 2, 0 , are large ; the temporal fossæ (ib. fig. 3, t, are eovered principally by the posterior frontals (fig. 2, 12) ; and the osscous shield completed by the parictals ($\overline{)}$), and mastoids (8), overhangs the tympanie (28), exoccipital (2), and paroeeipital (4) bones. The eompressed spine (3) of the occiput is the only part that projects further baekwards.

The palatal and nasal regions of the skull afford further cvidence of the affinities of the present Sheppey Chelonite to the true turtles. The bony palate (fig. 3) presents, in an exaggerated degrec, the great extent from the intermaxillary bones to the posterior nasal aperture which eharacterises the genus Chelone ; and it is not perforated, as in the soft turtles (Trionyx), by an anterior palatal foramen.

The extent of the bony palate is relatively greater than in the Chclone mydas, and the trenehant alveolar ridge is less deep; the groove for the reception of that of the lower jaw is shallower than in the Chclone mydas, or the extinct Chel. breviccps, arising from the absence of the internal alveolar ridge, in whicl respeet the Chel. longiceps resembles the Chel. caretta.

The Chelone longiceps is distinguished from all known existing Chelones by the proximity of the palatal vomer (13, fig. 3), to the basisphenoid (5), and by the depth of the groove of the pterygoid bones (24), and in both these eharaeters in a still greater degree from the Trionyxes; to whieh, however, it approaches in the elongated and pointed form of the muzzle, and the trenehant charaeter of the alveolar margin of the jaws.

The following are dimensions of the skull deseribed :

In a second example of the skull of Chelone longiceps, two of the middle neural plates, and the corresponding costal plates of the right side, portions of vertebræ, with the right xiphisternal piece, humerus and femur, are cemented together, and to the cranium by the petrified clay. (T. IV, fig. 1.)

The neural plates $(s 2, s 3)$ are flat and smooth; the entirc one measures one inch two lines in length, and ninc lines across its broad anterior part:-this receives the convex posterior extremity of the preceding plate in a corresponding notch. A small proportion, about onc sixth, of the anterior part of the external margin, joins the second costal plate ($p / 2$) ; the remaining five sixths of the outer margin forms the suture for the vertebral end of the third costal plate ($p l 3$).

In this respect, the Chel. longiceps rescmbles the existing Chelones; and differs, as well as in the smooth and flattened surface of the vertebral plates, from the Chelone breviceps. The length of the third costal plate, in the fragmentary example here described, is three inches; the impression of the commencement of the narrow portion, formed by the extremity of the coalesced rib, is preserved.

The marginal indentations of the vertcbral scutes are not half a line in breadth.
The transverse impression between the first and second vertebral scute crosses the first neural plate, nine lines from its posterior extremity; the second neural plate is free, as in other Chelones, from any impression, being wholly covered by the second vertebral scute.

The expanded ribs are convex at the under part, slightly concave at the upper part in the direction of the axis of the shell; they slope rery gently from the plane of the neural plates, about half an inch, for example, in an extent of three inches; thus indicating a very depressed form of carapace.

The xiphisternal bone ($x s$), like that of Chel. breviceps, is relatively broader than in the existing turtles, and both the internal and external margins of its posterior haff are slightly toothicd. A part of the notch by which it was attached to the liyposternal remains upon the broken anterior extremity of the bone. It measures one inch two lines across its broadest part; its length scems to have been three inches and a half.

The humerus presents the usual characters of that of the Chelones; its length is two inches three lines; its breadth across the large tuberosities ten lines. The radius and ulna extend in this Chelonite from beneath the carapace into the right orbit; the radius is one inch and a half in length; the ulna one inch, three lines in length; portions of vertebre adhere also to the mass, the state of which indicates that the animal had been buried in the clay before the parts of the skeleton had been wholly disarticulated by putrefaction.

A mass of Sheppey clay-stone supporting the ninth and tenth neural plates, and the expanded portions of the sixth, seventh, and cighth costal plates of the right side, exhibits the characters of the marine turtles in the great rclative expansion of the
tenth neural plate ; and the tooth-like eontinuation of the rib from the posterior angle of the eighth eostal plate ($p / 8$, T. IV, fig. 2). These portions of the earapaee, from their smooth surfaee, the impressions of the horny seutes, the form of the vertebral ends, and the eoneavity of the upper surfaee of the eostal plates, evidently belong to the same speeies as the fossil last deseribed.

A similar mass of Sheppey elay-stone, in Mr. Lowe's eolleetion, supports a larger proportion of the hinder part of the earapaee, ineluding the sixth, seventh; eighth, ninth, and tenth neural plates, part of the fifth neural plate, more or less of the last four pairs of eostal plates, with the impressions of the third and fourth ribs of the right side; the impression of apparently the whole of the free, slender, termination of the third rib is preserved, and also that of the fifth rib, eonfirming the generie eharaeters indieated by the skull. The smooth outer surfaee of the bones of the earapaee, the forms of the neural plates, and the eoneomitant modifieation of the eommeneement of the eostal plates artieulated therewith, eoneur to establish the speeifie distinetion from the Chelone breviceps, and indieate the speeimen to belong to the present species, Chelone longicops. The seventh, eighth, and ninth neural plates progressively deerease in size ; and the ninth presents a simple, quadrangular, oblong form ; the tenth neural plate suddenly expands, and has apparently a triangular form, but its posterior border is ineomplete.

The indieations of the eomparative flatness of the earapaee of the Chelone longiceps, (in this respeet, as in the elongated and pointed form of the skull, approaehing the genus Trionyx, which were derived from an examination of the foregoing fragments, and particularly of the portion preserved with the eranium on which the speeies is founded, are fully eonfirmed by the almost entire earapaee whieh, subsequently to the publication of my 'Report on British Fossil Reptiles,' where the present speeies is first notieed, I have had the opportunity of examining in the eolleetion of Mr. Bowerbank.

This earapaee, as eompared with that of the Chelone breviceps in the same eolleetion, presents the following differences:-it is mueh broader and flatter. The neural plates are relatively broader ; the lateral angle from which the intereostal suture is eontinued, is mueh nearer the anterior margin of the plate-the Chelone longiceps, in this respeet, resembling the existing speeies of turtle (see fig. 1, p. 3). The eostal plates are relatively longer ; they are slightly eoneave transversely to their axis on their upper surfaee, while in Chel. breviceps they are flat. The external surface of the whole earapaee is smoother; and although it is as depressed as in most turtles, it is more regularly convex; not sloping away by two nearly plane surfaees from the median longitudinal ridge of the earapaee.

The following minor differenees may be notieed in the two Sheppey Chelonites: the nuehal plate of the Chel. longiceps (Tab. V, fig. l, ch) is more eonvex at its middle part, and sends baekwards a short emarginate proeess to join the first neural
plate ($s 1$) ; in which it resembles the Chel. mydas. Both posterior angles of the first neural plates are produced, and truneate to artieulate with the seeond pair of costal plates; and the second neural plate is quadrangular. In a portion of another earapace of the Chelone longiccps the second neural plate (s2) is pentangular, the right anterior eorner being produecd, and truncate to join with the first costal plate of the right side ; the left posterior corner of the first neural plate ($s 1$) being produced, and truncatc, to artieulate with the second eostal plate of the left side. This structure I believe, however, to be an individual variety. But the eharaeters of the speeies are exemplified in more eonstant modifieations of the earapaee. The sueceeding ncural plates to the seventh inelusive ($83-s 7$) are hexagonal, with the anterior lateral border mueh shorter than the posterior lateral border, as in Chelone mydas, and not of equal extent, as in Chclone breviceps; they become more equal in the scventh and eighth ncural plates, which also deerease in size; the ninth plate ($s 9$) is very small, quadrangular, and oblong, as in Mr. Lowe's fragment. Only a small portion of the tenth ncural plate is prescrved in Mr. Bowcrbank's beautiful specimen.

The impressions of the horny seutes are deeper, and the lines which bound the sides of the vertebral seutes $\left(v_{1}-v_{4}\right)$ meet at a much more open angle than in the Chel. Droviccps, in which the vertebral scutes have the more regular hexagonal form of those of the Chcl.mydas. Their relations to the neural plates are nearly the same as in Chel. breviceps.

The plastron (Tab. V, fig. 2) is more remarkable than that of the Chel. breviceps for the extent of its ossification ; the eentral cartilaginous space being reduced to an elliptical or subquadrangular fissurc. The four large middle pieccs liyosternals (hs) and lyposternals ($p s$), have their transverse extent relativcly mueh greater as compared with their antero-posterior extent, than in the Chel. breviceps; and this might be expcetcd, in conformity with the broad charaeter of the bony cuirass indicated by the earapace. The median margins of the hyosternals (hs) are developed in short toothed proeesses, along their anterior three fourths; the median margins of the lypposternals ($p s$) have the same structure along ncarly their whole extent; the intermediate spaee between the smooth or edentate margins of the opposite bone is ten lines; the expanded end of the long coracoid (52) is seen projeeting into this space.

The xiphisternals (ass) are relatively broader than in Chel. breviceps, or in any of the existing turtles; and are united together, or touch cach other, by the toothed processes developed from the whole of their median margins. The entosternal piece is broad, flat on its under surface, and is likewise dentated at its sides.

The outcr surface of each half of the plastron inelines, as in the Chclone mydas, towards a submedian longitudinal ridge.

The breadth of the plastron, in the speeimen figured (fig. 2), along the median suture, uniting the hyosternals and hyposternals, is six inehes : the narrowest anteroposterior diameter of the conjoined hyosternals and hyposternals is two inehes nine lines.

The breadth of the plastron, at the junction of the xiphisternals with the hyposternals, is two inches six lines.

The posterior part of the cranium is preserved in Mr. Bowerbank's speeimen (fig. 1), withdrawn beneath the anterior part of the carapace; the fracture shows the osseous shield eovering the temporal fossæ; and the pterygoids remain, cxhibiting the deep groove that runs along their under part.

It is most satisfaetory to have found that the two distinct species of the genus Chelone, determincd, in the first instance, by the skulls only, should thus have been eonfirmed by the subsequent eomparison of their bony euirasses; and that the specifie differences, manifested by the euirasses, should be proved by good cvidence to be eharacteristie of the two species founded on the skulls.

Thus the portion of the skull preserved with the earapaee first deseribed (Tab. II, figs. 2 and 3), served to identify that fossil with the more perfeet skull of the Chelone breviceps (Tab. I), by whieh the species was first indieated. And, again, the portion of the carapaee adhering to the perfeet skull of the Chelone longiceps (Tab. IV, fig. 1) equally served to eonnect with it the nearly complete osseous buekler (Tab. V, fig. 1), whieh, otherwise, from the very small fragment of the skull remaining attaehed to it, could only have been assigned conjeeturally to the Chel. longiceps; an approximation whieh would have been the morc hazardous, since the Chelone breviceps and Chelone longiceps are not the only turtles whieh swam those ancient scas that received the enormous argillaecous deposits of whieh the Isle of Sheppey forms a part.

Chelone latiscutata. Owen. Tab. VI.
Proceedings of the Geological Society of London, December 1, 1841, p. 574. Report on British Fossil Reptiles, Trans. British Association, 1841, p. 179.

A considerable portion, measuring three inehes in length, of the bony cuirass of a young turtle from Sheppey, ineluding the first to the sixth neural plates (T. VI, fig. l, $s 1$ —s6), with the eorresponding pairs of eostal plates ($p l_{1}-p l 6$), and the liyosternal (fig. 2, $/\langle s$) and hyposternal ($p s$) elements of the plastron, most resembles that of the Chelone longiceps in the form of the earapaee, and especially in the great transverse extent of the above-named parts of the plastron: it differs, however, from the Chel. longiceps, and the other known fossil Chelonites, in the greater relative breadth of the vertebral scutes $\left(v_{2}, v 3\right)$, whieh are nearly twice as broad as they are long.

The eentral vaeuity of the plastron is subcireular; and, as might be expeeted, from the apparent nonage of the speeimen, is wider than in the Chel. longiceps; but the toothed proeesses given off from the inner margin of both hyosternals and hyposternals are small, sub-equal, regular in their direetion, and thus resemble those of the Chel. longiceps; the slender point of the episternal (s) is preserved in the interspace between
the hyosternals. Both hyosternals ($h s$) and hyposternals ($p s$) are slightly bent upon a median longitudinal promincnee of their under surfaees.

The length of the third eostal plate ($p l 3$) is one inch seven lines; its anteroposterior diameter or breadth, six lines: in the form of the vertebral extremities of the eostal plates, and of the neural plates to which they are artieulated, the present fossil resembles the Chel. longiceps; but the fifth neural plate is more convex, and is crossed by the impression dividing the third vertebral seute ($v 3$) from the fourth, whieh impression crosses the suture between the fifth and sixth neural plates in both Chelone longiceps and Chelone breviceps. Whether, in the progressive ehange of form, whieh the vertebral scutes may have undergone in the growth of this young turtle, as during the growth of the young loggerhead turtle (Chelone caouanna), by an inerease of length, without corresponding increase of breadth, the impression between the third and forth vertebral seute, might also retrograde to the interval between the fifth and sixth neural plates, I am uneertain, having only had the opportunity of eomparing the seutes of the young and old loggerhead turtles, not the skeletons. The change in the lateral angles of the vertcbral scutes, resulting from the elongation of the scutes themselves, in the loggerhead, would be similar to that in the Chelone longiceps, as compared with the Chel. latiscutata, on the hypothesis that the latter is the young of the former ; but in my present uncertainty I prefer to indicate the specimen in question, by the definite name proposed in my original Mcmoir; its description as a distinct species being more likely to attract the attention of Collectors to similar speeimens, and to enable them to identify such. Figure 3, T. VI, gives the degree of convexity of the earapaee, and the double eurve of the plastron produced by the prominence of the prineipal hæmapophyses $k s$ and $p s$. The left scapular arch (51) is exposed in this view.

Chelone convexa. Owen: Tab. ViI.

Procecdings of the Geological Socicty of London, December 1, 1841, p. 575. Report on British Fossil Reptiles, Trans. British Association, 1841, p. 178.

The fourth speeies of Chelone, indicated by a nearly eomplete cuirass, from Sheppey, holds a somewhat intermediate position between the Chelone breviceps and the Chelone longiceps; the carapaec being narrower, and more eonvex than that of Chel. longiceps; broader and with a more regular transverse curvature than in the Chelone breviceps.

Although the specimen is equal in size to either of the two with which it is here compared, the costal plates hold an intcrmediate length, which shows that this character is not due to a difference depending upon age.

The fossil in question includes the first to the cighth ncural plate inclusive ; the first plate (81) expands behind, and both posterior angles are truncated to articulate with the second costal plates ($p / 2$). The sccond ncural plate ($(s 2$) is quadrate, half as long again as broad, and the second pair of costal plates articulate with this, as
well as with the first and third plates, as in the Chel. longiceps (Tab. V, fig. 1). The tooth-like extremity of the connate rib is preserved on the right side. The fourth costal plate ($p l_{4}$) is two inches four lines in length, nine lines in breadth; the angle at which the expanded part contracts to the extremity of the connate rib is well shown on the right side. The third to the eighth neural plates expand anteriorly, and have the anterior angles cut off to articulate with the costal plates in advance; they diminish in size very gradually, and the antero-lateral borders, formed by the above-named truncated angles, do not increase in length as in the corresponding plates in the Chclone longiceps.

The vertebral scutes $\left(v_{2}, v_{3}, v_{1}\right)$ resemble more in form those of the Chcl. longiccps than of Chel. breviccps; but, notwithstanding that the whole carapace is narrower than in Chel. lomgiceps, the vertebral scutes are broader; and the lines which converge to the lateral angle have a more marked sigmoid curvature.

	Chel. convexa.		Chel. longiceps.	
	Inches.	Lincs	Inches.	Lincs.
The length of the second vertebral scute is	1	8	1	8
Breadth	2	6	2	2

The two succeeding scutes (v_{3} and v_{4}) more rapidly diminish in size than in cither the Chel. breviceps or longiceps, and the transverse impression between the third and fourth vertebral scute crosses the lower third of the fifth neural plate, as in Chclone latiscutata. All the scutes have left deeper and rather wider impressions than in the preceding species.

The second to the fifth costal plates inclusive, are morc equal in length than in the existing Chclone mydas or Chcl. caozamna, and in this character the present species more resembles the Chel. imbricata.

The distinction of the present from the previously described fossils, already manifested in the structure of the carapace and the form of the vertebral scutcs, is more strikingly established in that of the plastron (Tab. VII, fig. 2), which, in its defective ossification, resembles the same part in the existing species of Chclonc.

All the bones, but especially the xiphisternals ($x s$), are more convex on their outer surface than in other turtles, recent or fossil. The central vacuity is greater than in any of the above-described fossil species. The internal rays of the hyosternals come off from the anterior half of their inner border, and are divided into two groups: the lower consisting of two short and strong teeth, projecting inwards towards the extremity of the entosternal (s); while the rest extend forwards along the inner side of episternals (es). The same character may be observed in the corresponding processes of the hyposternals ($p s$), which are limited to the posterior half of their inner border. The external radiated process of the hyosternals ($h s$) arises from a larger proportion of the outer margin, than in the Chel.mydus; but from a somewhat less proportion than in Chel. breviceps.

The extcrnal process of the hypostcrnal ($p s$) is relatively much narrower than in the Chel. breviceps (T. II, fig. 2), and, à fortiori, than in Chel. longieeps (Tab. V, fig. 2). The straight transverse suture by which the hyosternals and hyposternals of the samc side are joined together, is much shorter than in the other fossil Chelones; and is similar in extent to that in Chel. mydas; but the following differences present themselves in the plastron of the Chelone convexa, as compared with that of the Chelone mydas.

The median margin of the hyosternals forms a gentle curve, not an angle: that of the hyposternals is likewisc curved, but with a slight notch. The longitudinal ridge on the external surface is nearer the median margin of the liyosternals and lyyposternals and is less marked than in the Chelone longiceps; especially in the hyposternals, which arc characterised by a smooth concavity in the middle of their outer surface.

The suture between the liyostemals and liyposternals is ncarer to the external, transverse, radiated process of the hyposternals. The median vacuity of the sternal apparatus is clliptical in the Chel. eonvexa, but square in the Chel. mydas.

The characteristic lanccolate form of the epistcrnal bone (s) in the genus Chelone, is well seen in the present fossil. The entostcrnal element of the plastron is subcircular, or lozenge-shaped ; and generally broader than it is long in the Emydians.

The true marine character of the present Sheppey Chelonite, so well given in the carapace and plastron, is likewisc satisfactorily shown in the small relative size of the entire femur (65) which is preserved on the left sidc, attached by the matrix to the left xiphisternal. It prescnts the usual form, and slight sigmoid flexurc, characteristic of the Chelones; it measures one inch in length.

In an Emys of the same size, the femur, besides its greater bend, is one inch and a half in length.

A Chelonian cranium from Sheppey, two inches five lines in length, in the museum of Professor Bell (T. VI, fig. 4), and a second of the same species from the same locality, two inches ninc lines in length, in the museum of Fred. Dixon, Esq., F.G.S., of Worthing, belong to the same spccies, and differ from the cranium of the Chelone breviceps, in the more pointed form of the muzzle, and the less rugose character of the outer surface of the boncs; they equally differ from the Chelone longiceps in the less produced, and less acute muzzle, and the more rugose surface of the bones. The parictals (7) arc bounded anteriorly by a scmicircular line, not by a scmioval one, as in Chel. longieeps, or by an angular onc, as in Cliel. Drevieeps. The frontals (11) enter into the formation of the orbits, as in both the foregoing specics. The orbits are subcircular, as in Chel. longiceps, not subrhomboidal with the angle rounded off, as in Chel. breviecps. The postfrontals (12) arc large, and form a slight projection at the back part of the supraorbital ridgc. The tympanic cavity is larger in proportion than in the Chelone longiceps. The palate is traversed by a deep median, longitudinal groove, between which and the shallower grooves on the inner sides of the alveolar borders, are two well-marked, diverging, longitudinal prominences. The
bony palate is longer than in Chelone breviceps, shorter than in Chel. longiceps. The symphysis of the lower jaw (T. VII, fig. 3) is longer or deeper than in the Chelone breviceps, but is convex below from side to side, and not flattened as in the Chelone planimentum.

All the specimens of Chelone convexa, whieh I have been able to determine, are from the London clay of Sheppey.

Chelone subcristata. Owen. Tab. VIII.
Proceedings of the Geological Society of London, December 1, 1811, p. 576. Report on British Fossil Reptiles, Trans. British Association, 1841, p. 179.

The fifth speeies of Chelone from Sheppey, distinguishable by the characters of its carapaee, approaches more nearly to the Chelone caouana in the form of the vertebral seutes $\left(v_{1}-v_{4}\right)$, which are narrower in proportion to their length, than in any of the previously deseribed species; but the Chelone subcristata is more conspicuously distinct by the form of the fifth and seventh neural plates $(85, s 7)$, cach of which supports a short, sharp, longitudinal erest; a similar erest is developed from the contiguous ends of the seeond and third neural plates $(s 2, s 3)$; the middle and posterior part of the nuehal plate (ch) is raised into a convexity, as in the Chel. longiceps; but not into a crest.

The keeled structure of the above-eited neural plates is more marked than in the third and fifth neural plates of Chelone mydas, which are raised into a longitudinal ridge.

The neural plates in the present carapace have thic ordinary, narrow, elongated form of those in the true Chelones. The nuchal plate (ch) has the middle of its hinder border produced backwards, instead of being emarginate, as in the Chel. breviceps ('T. II, fig. 1, ch).

The first neural plate in the Chelone subcristata (T. VIII, $s 1$) resembles that in the Chelone convexa, but is narrower in proportion to its length; the second (s2) is also quadrangular, as in Chel. conwexa, but is narrower; the third to the scventh likewise differ from those in Chel. convexa only by being narrower; but the cighth and ninth neural plates are relatively smaller than in any of the before-described fossils, and resemble those of existing Chelones. The expanded plate is morc elevated, and is bent down on eaeh side, with the middle part forming an obtusc longitudinal ridge. A part of the contiguous portion of the first $\left(p l_{1}\right)$ and the second $\left(p l_{2}\right)$ eostal plates are raised into a slight convex eminence on each side; the surface of the remaining pairs of ribs is flat in the axis of the body, but they are more convex transversely to that axis, and in the direetion of their own length, than in the other Chelonites.

The whole outer surfaee of the bones of the carapace is as smooth as in the Chel. lonyiceps and Chel. convexa.

Length of earapaee from the first to the eighth neural plate inelusive :

Ch. subcristata.	Ch. breciceps.	Ch. longiceps.	Ch. convexa.				
Inches	Lines.	Inches	Lines.	Inches. Lines.	Inches.	Lines.	
7	4	5	6	5	9	5	8

The length of the present fossil carapaee, to the tenth neural plate, inelusive, is nine inches.

The breadth between the ends of the third costal plates, in a straight line, is six inches six lines. The sueeeeding costal plates more gradually decrease in breadth, than in the Chel. longiceps and Chel. convexa; and the entire earapaee more resembles in form that of the Chel. mydas, and Chel. casuanna.

The epidermal seutes are defined by deep impressions, and as wide, relatively, as in the Chel. mydas and Chel. convexa. The length of the second vertebral scute is two inches one line; its breadth is two inches two lines; the length of the fourth vertebral scute is two inches three lines; and its breadth one ineh eleven lines, and, at its posterior margin, only nine lines. This scute is narrower than in Chel. caouanna, or any of the previously deseribed fossil species; the outer angles are less produeed than in the Chelone caouanna.

Suffieient of the plastron is exposed in the present fossil to show by its narrow elongated xiphisternals ($x s$), and by the wide and deep noteh in the outer margin of the eonjoined hyosternals and hyposternals ($h s$ and $p s$), that it belongs to the marinc Chelones. The xiphisternals are articulated to the hyposternals by the usual notch or gomphosis; they are straighter and more approxinated than in the Chel.mydas and Chel. caouanna. The external emargination of the plastron between the hyosternals and hyposternals, differs from that of the reeent turtles in being semicireular, instead of angular; the Chel. subcristata approaching, in this respect, to the Chel. breviceps. The shortest antero-posterior diameter of the conjoined hyosternals and hyposternals is two inches seven lines. The length of the xiphisternal is two inches six lines; the breadth of both, aeross their middle part, is one inch three lines.

The name proposed for this species indicates its chief distinguishing character, viz., the median interrupted earina of the carapace, whieh may be presumed to have been more conspicuous in the horny plates of the recent animal, than in the supporting bones of the petrified carapace.

Chelone planimentum. Owen. Tab. IX and X.
Proceedings of the Gcological Socicty of London, December, 1841, p. 576. Report on British Fossil Reptiles, Trans. British Association, 1841, p. 178. Syn. Chelone Marvicensis, Woodward (?).

The skull of a large Chelone (T. IX) from the Eocene clay near Harwich, in Professor Sedgwick's collection at Cambridge, resembles, in the pointed form of the muzzle, the Chel. longiceps of Sheppey; but differs in the greater convexity and breadth of the cranium (fig. 2); and the more abrupt declivity of its antcrior contour (fig. 3), and from other Chelones by the broad expanse of the inferiorly-flattened symphysis menti (fig. 1).

The osseous roof of the temporal fosse, and the sharc contributed to that roof by the postfrontals (T. IX, figs. 2 and 3, 12), distinguish the present, equally with the foregoing Chelonites, from the Emys (Podoenemys) expansa, and, à fortiori, from other genera and species of the fresh-water families (Emydida and Trionieida).

In the oblique position of the orbits (fig. 3, o), and the diminished breadth of the interorbital space (fig. 2), the present Chelonite, however, approaches nearer to Trionyx and Emys than do the previously-described specics. But the sides of the face converge more rapidly towards the muzzle. Its most marked and characteristic difference from all existing Chelones is shown by the greater antero-posterior extent, breadth, and flatness of the under part of the symphysis of the lower jaw, whence the specific name here given to the species. The posterior border of the symphysis is defined by a regular semicircular curve, and the rami of the jaw have completcly coalesced.

Since at present there is no means of identifying the well-marked species, of which the skull is here described, with the Chclonitc figured in the frontispicce to Woodward's 'Synoptical Table of British Organic Remains,' and alluded to, without additional description or characters, as the Chelonia Harvicensis, in the additions to Mr. Gray's 'Synopsis Reptilium' (p. 78, 1831) ; and since the extensive deposit of Eocene clay along the coast of Essex, like that at the mouth of the Thames, contains the relics of more than onc species of ancient British turtles,* I prefer indicating the one here established by a name having reference to its peculiarly distinguishing character, rather than to associate arbitrarily the skull, which gives the true specific distinction, with the ill-defined carapace to which the vaguc name of IIarvieensis has been applied; more especially as the fossil carapace to which the present skull more probably belongs, from the circumstance under which it was discovered, also presents wellmarked, and readily-recognisable specific characters.

This carapace (T. X) is also contained in the museum of Professor Scdgwick, and is understood to have formed part of the same individual turtle as the skull (T. IX) on which the specics, Chel. planimentum, was founded.

In general form this carapace differs from that of the existing Chelones, in being less contracted and pointed posteriorly than in the Chelone mydas and Chel caouanna, and more contracted posteriorly than in the Chel. imbrieata. In the proportion which the pleurapophyses (true ribs), bear to the superimposed costal plates, ($p l_{4}-8$) it resembles Chelone mylas, and Chelone caouanna, more than it does the Chel. imbrieata. But the pleurapophyses are more prominent and distinct from the costal plates throughout their entire length, than in the Chel. mydas or Chel. eaouanna, and present an obtuse angular ridge towards the cavity of the abdomen.

The five posterior pairs of ribs of the carapace ($p l_{4}-p / 8$) arc preserved, with part

[^8]of the first three on the left side, and one of the eoraeoids (52) showing the rather sudden and eonsiderable expansion of its sternal or mesial half.

The interval between the free extremities of most of the ribs, is about equal to twiee and a half the breadth of eaeh extremity; but the interval between the seventh ($p / 7$) and eighth ($p / 8$) rib, measured, like the others, at the terminal border of the eostal plates, is equal to thriee the breadth of the free part of the seventh rib.

In this respeet the Chelone planimentum resembles the Chel. mydas more than it does the Chelone caouanna, in which the interval between the free extremities of the seventh and eighth ribs is less than that between the sixth and seventh. The length of the eostal plate of the fourth rib is twiee that of the eighth rib, as in the Chelome caouanna; in Chel. myllas it is more than twiee as long; in Chel. imbricata it is only one third longer. The marginal pieees in the Chelone planimentum seem to have been narrow or slender in proportion to their length.

The following admeasurements show that, in the large proportionate size of the head, the Chelone planimentum eorresponds with the existing turtles:

								Inches.	Lines.
Length of the eranium		.	-	-	-	-	.	5	6
Deptl of ditto	.	.	-	-	.	-		4	0
Breadth of ditto			.		.	-		5	0
Length of the earapaee .			.	-	-	.		15	6
Greatest breadth of ditto			.	.				13	0

Tab. IX and X satisfaetorily illustrate the eharaeteristie forms and proportions of the unique speeimen in the Cambridge Muscum; the earapaee is figured of half the natural size.

Chelone crassicostata. Owen. Tab. XI and XII.
Testudo Plana. König. 'Icones Seetiles,' Pl. XVI, fig. 192?
That the extinet speeies of Eocene turtles attained larger dimensions than those given above, is proved by a fossil skull from the Harwieh elay, in the eolleetion of Professor Bell, whieh gives the following dimensions:

This skull differs from that of the Chelone planimentum in the minor depth of the maxillary bone below the orbit (eompare T. IX, fig. 3, with T. XI, fig. 2, 21), in the more aeute and attenuated muzzle; but especially in the minor breadth and the different eonfiguration of the posterior margin of the symplysis of the lower jaw (compare T. IX,
fig. 1, with T. XI, fig. 3). With regard to the comparative anatomy of the bones of the skull, and the pattern of the scutation of the upper surface of the cranium, I regret that the state of the specimen in Professor Bell's collection does not permit the deduction of other distinctive characters which such parts of the cranial organization so satisfactorily afford. A great proportion of the osseous parietes is wanting; but the cast in the lard matrix of the wide lateral cavities (12,12), which were over-arched by the expanded postfrontal and parietal bones, indicates the prominence of the postfrontals at the upper and outer angle of the orbits. The orbits (or) appear to have been more ovate and less circular than in the Chelone planimentum; and the sides of the orbital part of the skull do not converge so rapidly towards the muzzlc, but mect at a more acute angle.

That a sccond species of turtle, distinct from the Chelone planimentum, has lcft its remains in the Harwich clay, is very decisively demonstrated by the ahmost complete carapace in the British Museum, the inner surface of which is represented, on the scale of six inches to a foot, in T. XII. This carapace, both by its general contour, by the relative length of the costal plates to one another, and by their relative breadth to the adherent pleurapophyses beneath, morc resembles the carapace of the Chelone imbricata than that of the other known cxisting species of turtle; and, as the peculiar characters of the Chelone imbricata are exaggerated, it differs in a proportional degrec from the Chelone planimentum. These characters are seen in the great breadth of the prominent inferior part of the ribs, and of the free extremity of the rib ($p l_{1}-p / 8$), as comparcd with the total breadth of the costal plate. The intervals between the free extremitics, where the expanded plate terminates, are not equal to the breadtl of the proper ribs ; in the Chelone imbricata they very slightly excced the breadth of the frec ends of the ribs. This character in the fossil, by which it is so markedly distinguished from the Chelone planimentum, and most other spccies, has suggested the name Chelone crassieostata, or thick-ribbed turtle, which is proposed for the present species. The last pair of ribs of the carapace (T. XII, pl8) arc remarkably short and thick, and are curved backwards on each side the broad terminal neural plates which they almost touch. In this character the Chel. crassicostata resembles the Chel. imbricata, and differs from the Chel. caonanna (fig. 2, p. 3), and from Chel. mydas. The subequality of length of the costal plates is another character by which the Chel. crassieostata resembles the Chel. imbricata, and differs from the Chel. mydas, the Chel. caouanna, as well as from the Chel. planimentum.

In T. XII, as in the other figures, c / i is the nuchal plate, $p l_{1}$ the first rib of the carapace (the second free pleurapophysis or vertebral rib), $p l_{2}$ to $p l_{8}$ the remaining ribs of the carapace and costal plates; $s 9, s 10$, and $p y$ are the terminal neural plates and pygal plate, which, like the nuchal plate, are developed in the substance of the integument, without becoming attached to the subjacent spinous processes of the vertebræ. The debris of the neural arches of the intermediate eight vertebræ of the
carapace are preserved in the interspaces of the beginnings of the ribs and costal plates in this beautiful Chclonite. It forms part of the Fossil Collcetion in the British Museum.

A carapace of a smaller individual of Chelone crassicostata, from the Harwich coast, with the character of the broad and inwardly-prominent ribs strongly marked, is likewise preserved in the choicc collection of my esteemed fricnd Professor Bell. One of the hyosternal bones, inclosed in the same nodule of clay, testifies to the partial ossification of the plastron in this species by its coarsely-dentated border ; and, at the same time, shows a specific peculiarity by the convexity of that surface which was turned towards the cavity of the thoracic-abdominal case. On the moiety of the nodule containing the carapace and exposing its under surface, the slender rudimental rib of the proper first dorsal vertcbre is preserved, in connexion with the first expanded rib of the carapace.

Besides the spccimen of Chelone crassicostata from Harwich, figured in T. XII, there is a mutilated carapace of a young Chelone, from the same locality, in the British Muscum. This specimen exhibits the inner side of the carapace, with the heads, and part of the expanded bodies, of four pairs of ribs, which indicate its specific agreement with the foregoing specimen, and demonstrate uncquivocally its title to rank with the marine turtles. It is figured in Mr. Konig's 'Icones Sectiles' (pl. xvi, fig. 192), under the name of Testudo plana.

A rare Chelonite from the hard Eocene clay apparently of Harwich, in the collection of my friend Frederick Dixon, Esq., F.G.S., of Worthing, shows the impressions from the under surface of the carapace, and also an instructive part of the under surface of the plastron itself. (T. XIII.) The proportions and degree of convexity of the under surface of the costal plates of the carapace ($p l, p l$) correspond with those parts in the Chelone crassicostata.

The remains of the plastron include a great portion of the left hyosternal ($/ / s$), left hyposternal ($p s$), and left xiphisternal ($x s$) ; the latter is articulated to the hyposternal by a notch, receiving a toothed process, and, reciprocally, near the upper part of a long oblique harmonia, between the outer border of the hinder angle of the hyposternal and the inner border of the upper half of the xiphisternal. The hyosternal is concave lengthwise, and is convex across on its under surface; the transverse linear impression, dividing the pectoral and abdominal scutes, crosses near its posterior border. The degree of concavity of the outer surface of this bone corresponds with the convexity of the upper and inner surface of the same bone in the specimen of the Chelone crassicostata from Harwich, in the Muscum of Professor Bell ; and it concurs with the characters of the costal plates in proving the present Chelonite to be of the same species. Impressions of the toothed mesial margin of the right hyosternal remain, and part of the toothed margin of the left hyposternal.

The right coracoid (52) is exposed by the removal of the right hyosternal ; it differs in form from that preserved in the large specimen of Chelone planimentum, in Professor Sedgwick's Museum, in expanding less suddenly at its sternal end, as compared with the coracoid of the Chelone mydas, or with that of the Chelone caouanna, which is somewhat broader than in the Chel. mylas; the coracoid of the Chel. crassicostata agrees with that of the Chel. planimentum in the greater degree of its expansion. At the anterior fractured surface of Mr. Dixon's Chelonite, the long and slender columnar or rib-like scapula, is shown, extending from the under part of the head of the second costal rib downwards and outwards, for an extent of two inches, and then sending its acromial or clavicular prolongation at the usual open angle downwards and inwards to rest upon the episternal. The proportions of these parts of the scapular arch are quite those which characterise the genus Chelone, but they do not supply such marks of specific distinction as the coracoid element does.

Chelone declivis. Owen. Tab. XIV.

The extinct turtle represented by this spccimen, and indicated by the above term, bears the same relation to the Chelone convexa, which the Chelone longiceps* does to the Chelone latiscutata $; \dagger$ that is, it has the same general characters of the petrified parts of the carapace, but differs in the narrower proportions of the vertebral scutes ($v_{1}-v_{4}$), and the more open angle at which their two lateral borders meet; the vertebral angles of the costal scutcs being correspondingly less acute.

The specimen is from the Eocene deposits of Bognor, Sussex, and is prescrved in the collection of Frederick Dixon, Esq. It consists of the seven anterior neural plates, and the corresponding seven pairs of costal plates (T. XIV), those of the right side having been broken away from their attachments to the neural plates, and bent upon the rest of the carapace at an acute angle with some slight separation of the suturcs of the costal plates (fig. 2).

The neural plates correspond in general form with those of the Chelone convexa, the hind ones being rather broader; the first (81) is crossed at its middlc part by the impression dividing the first (v_{1}) from the sccond $(v 2)$ vertebral scutc; the sccond neural plate ($\$ 2$) is an oblong four-sided one, with both ends of equal breadth. The third neural plate, $s 3$, resumes the hexagonal figure with the broadest end, and two shortest sides at the fore part; and is crossed in its lower half by the impression dividing the second, v_{2}, from the third vertebral scute, v_{3}. The fifth neural platc ($s 5$) is crossed by the next transverse impression ncarer its lower border. The sixth and seventh neural plates retain the same form and proportions as in the Chelone convexa, except a somewhat

[^9]greater breadth, and have not their antero-lateral borders inereased in length, as in the Chelone longiceps.

The deelination of the ribs from the neural plates, gives a greater degree of steepness to the sides of the carapace than in the Chelone convexa, and the impressions of the scutes have equal depth and breadth. The chief difference indicative of speeific distinetions, lies in the form of those impressions; and the question is, whether, in the progress of growth which makes the longitudinal extent of two of the vertebral scutes in one specimen nearly equal to three, in another, so great a change eould be effeeted in thcir shape as is shown in the specimen of Chelone convexa; in which it will be seen that the sceond vertebral seute (T. VII, v2), though more than one third shorter than in Chel. deelivis (T. XIV, v_{2}), is of the same breadth as that in the larger speeimen, and that the rest differ in the same remarkable degrec.

Chelone trigoniceps. Owen.

More than one of the old tertiary turtles (Chelone) arc remarkable for the longitudinal extent or depth of the symphysis of the lower jaw.

The turtlcs from the Eocene elay at Harwich have this eharaeter so strongly devcloped and the under surface of the symphysis so flattened, espeeially in one of the speeies, as to lave suggestcd the " nomen triviale" planimentum for it. The Chelone longiceps, if we may judge by the length of the upper jaw and bony palate, must have had a eorresponding extent of the symplysis of the under jaw ; and we may infer the same peculiarity from the straight alveolar borders of the maxillarics and their aeute eonvergence towards the premaxillary bones in an allicd species, Chelone trigoniceps, which I have described and figured in the Appendix to Mr. Dixon's work on the 'Fossils of Susscx,' from a specimen which is in the colleetion of G. A. Coombc, Esq., and which was obtained from the Eoeene clay at Braekleshan.

Amongst the Chelonites which Mr. Dixon has obtained from the same formation and locality, arc portions of the fore part of the lower jaw of four individuals of the genus Chelone, all exhibiting the elaraeters of the pointed form and great depth of the symphysis.

One of these specimens agrecs so eloscly in size and shape with the forc part of the upper jaw of the Chelone trigonieeps-fits, in fact, so exactly within the alveolar border, and so closely resembles that spceimen in texture and colour, that, coming from the same formation and locality, and being obtained by the same collectors, I
 strongly suspect it to belong to the same species of Chelone, if not to the same individual.

The known recent Chelones differ among themselves in the shape and cxtent of the bony symphysis of the lower jaw. Both the Chelone imbricata, and Chelone caouanna have this part decper and more pointed than the Chel. mylas, but neither speejes has
the symphysis so depressed or so slightly eonvex below as it is in the Braeklesham Chelones.

These also differ amongst themselves in this respeet. The symphysis whieh I have referred to the Chelone trigoniceps, is the broadest and flattest; at its baek part it shows a deep and broad genio-hyoid groove; this is redueed to a transversely oblong foramen in Chelone mydas.

The seeond speeies from Braeklesham, is indieated by the maxillary symphysis, the sides of whieh meet at a more aeute angle, and it is narrower in proportion to its length, is more eonvex below, and more coneave above, with the alveolar borders a little more raised, and the middle line less raised than in Chelone trigoniceps. In this respeet it is intermediate between the Chelone imbricata, where the upper surface of the symphysis is more eoneave, and the Chelone caouanna, where it is flatter than in the Chelone trigoniceps. The fossil symphysis under notiee, has also a smooth, transverse, genio-hyoid groove at its baek part. It aeeords so elosely in form with the end of the upper jaw of the Chelone longiceps, from Sheppey, that I refer it provisionally to that speeies.

Two other speeimens of the symphysis of the lower jaw, of rather larger size, appear to belong to the same speeies as that referred to the Chel. lonyiceps, by the eharaeters of the eoneavity of the upper surfaee, the eonvexity of the lower surfaee, and the degree of eonvergenee of the sides or borders of the symphysis. The larger of the two shows the genio-hyoid groove, and the nearly vertieal outer side of the jaw, opposite the baek part of the symphysis, and this shows no impression of the smooth fossa receiving the insertion of the biting museles, whereas, in the Chelone trigoniceps, fig. 11, that fossa extends to the same transverse line or parallel with the baek part of the symphysis.

The very rare and interesting Chelonite in Mr. Coombe's museum, was the first portion of the eranium of a reptile of this order that I liad seen from the Eoeene deposits at Bracklesham. It ineludes the bones forming the roof of the mouth, with portions of the bony nostrils and orbits, and the tympanie pedieles.

The extremity of the upper jaw is broken off, but the straight eonverging alveolar borders elearly indieate the muzzle to have been pointed, as in the Chelone longiceps of Sheppey; and the muzzle being shorter, the form of the skull has more nearly approaehed that of a right-angled triangle. The whole eranium is broader and shorter, and the tympanie pedieles wider apart. The middle line of the palate developes a somewhat stronger ridge; the orbits were relatively larger and advaneed near to the muzzle: the malar bones are more protuberant behind the orbits, and their external surface inelines inwards as it deseends from behind and below the orbit, to form the lower border of the zygoma, whieh it does not do in the Chelone longiceps.

The upper surface of the fossil shows the palatines rising to form the vomer at the middle line, and the two small subeircular vaeuities (oeeupied by membrane in the
recent skull) between the palatines, prefrontals, and maxillaries; the anterior border of the temporal fossa, formed by the malar and pterygoid, is entire on one side, and shows that that vacuity was as broad as it is long. The olfaetory excavations in the maxillaries are deep. The articular surface of the tympanitie pedicles closely accords with those of recent Chelones. The very regular triangular form of the skull indicated by this fragment, has induced me to propose the name of Chelone trigoniceps for the specics.

Chelone cuneiceps. Owen. Tab. XV.

One of the most completc and instructive crania of the fossil turtles of our Eocene deposits is the subject of T. XV, the opportunity of describing and figuring which has been kindly afforded me by J. Toulmin Smith, Esq., F.G.S., of whose cabinet it forms part, and by whose skilful manipulation its variously configurated exterior has been disencumbered of the hard adherent elay.

From the Chelone breviceps this speeimen differs by its more prolonged and pointed muzzle; by the more sudden and sloping deelivity of the prefrontal part of the cranium (fig. 1, 14); by the minor degree of rugosity of the surfaee of the bones ; and by the different disposition of the superincumbent horny seutella, whieh is indieated by their impressions. In the general arrangement of these impressions it accords better with the cranium of the Chelone longicens; but differs in the greater breadth of the skull as compared with its length; in the minor extent of the bony palate (fig. 3, 20, 21), the more advanced position of the posterior nostrils, and the greater length of the pterygoids (24). From the Chelone convexa it differs, in the greater relative breadth and flatness of the frontal bones, and of the whole intcrorbital platform (fig. 2, 11), in the downward slope of that part of the eranial profile, and in the more prominent eonvexities of the palatal processes of the maxillaries. From the Chelone planimentum it differs also, by the broader prefrontal part of the interorbital space, as compared with the transverse diameter of the back part of the skull; by the minor degree in which the frontal enters into the formation of the upper rim of the orbits; by the minor depth of the suborbital part of the maxillary and malar bones, and by a very different arrangement of the supracranial horny scutella.

The basi-oceipital (T. XV, figs. 3 and 4) is remarkable for the strong development of the tubercles for the insertion of the strong "recti capitis antiei," and for the depth of the median groove between them ; the semieireular fossa in front of these processes is bounded by a well-developed basi-sphenoidal ridge (5), the curve of which is deeper than in Chel. longiceps, but shallower than in Chel. breviceps. In the Chel. caouanna, in which the basi-oceipital tuberosities are better developed than in the Chel. imbricata or Chel. mydas, they are bounded anteriorly by an angular or elievron-shaped ridge of the basi-sphenoid. The exoecipitals (2) form the usual share of the trilobate occipital
condyle characteristic of the Chelonia. The paroccipitals (4) project backwards to a little beyond the posterior plane of the condyle, indicating an affinity to the Trionycida. The inferior surface of the part of the tympanic to which they unite is concave. The parietals (fig. 2, 7) form together a large semielliptic, almost flattened, platform, relatively broader than in Chel. mydas, not convex, as in Chel. caouanna; not indented by the mastoids, as in the Chel. longiceps, and not forming an angle between the frontals and postfrontals, as in the Chel. brevieeps. The frontals (11) together form a pentagon, with the longest margin joining the parietals, the next in length converging to a point betwcen the prefrontals, and the shortest borders joining the postfrontals. The postfrontals (12) and prefrontals (14) almost meet above the orbits, and exclude the frontals from entering into the formation of its superior border. The Chel. mydlas comes nearest to the Chel. cuneiceps in this particular; whilst in the Chel. imbricata the frontals enter as largely into the formation of the upper border of the orbit as they do in the Chel. breviceps, Chel. longiceps, and Chel. convexa.

The precisc form of the termination of the prcfrontonasals, the maxillaries, and premaxillaries cannot be determined in the present specimen; fortunately, the fracture of the anterior cxtremity of the skull has not extended to that of the bony palate. If this be bounded by a transverse line behind, drawn across the anterior border of the temporal fossæ, the space included forms a right-angled triangle, and includes the wholc of the posterior nostrils, In the Chel. longiceps the similarly defined space has the basc shorter than the converging sides, and the posterior nasal aperture is behind the transverse line. The bony palate, also, of Chel. cunciceps, instead of being pretty uniformly concare and cren, as in Clel. longieeps and Chel. caouanna, is raised on each side between the middle line and the marginal alveolar plate into two convexities, as in Chel. mydas and Chel. imbricata; but the most prominent part of the palatal eonvexities (figs. 3 and 4, 21) is obtuse in Chel. cmneiceps, not sharp or angular, as in Chel. mydas and Chel. imbricata.

The palatal part of the vomer (13) forms the median longitudinal groove dividing the convexitics, which are formed by the palatal processes of the maxillary bones. The small part of the alveolar border of the maxillary which is entire terminates in a sharp edge, cxtending about four and a half lines below the level of the palate.

The ridge of the palatines, which forms the antcrior boundary of the posterior nostril, is not produced or bent below the level of the bony palate, as in Chel. caouanna, and as it is, although in a minor degree, in Chel. mydas; and there is not that concavity between it and the oblique palatal tuberosity which exists in the Chel.mydas and Chel. imbricata.

The pterygoids are more deeply (semicircularly) emarginate laterally than in any of the existing specics of Chelones, and they are shorter in proportion to their breadth; they bound internally the lower apertures of the temporal fossæ, which are broader than they are long; in all the existing Chelones the opposite proportions prevail,
and in Chel. imbricata especially the homologous apertures are twice as long as they are broad. The pterygoids, in the Chel. cuneiceps, develope a sharp ridge along their median suture ; and short but well-defined processes at their anterior and outer angles. The channel or concavity upon the under part of the diverging portion of the pterygoid conducts obliquely into the temporal fossæ in the Chel. mydas; in Chel. cuneiceps it leads directly forwards upon the under surface of the anterior part of the ptcrygoids exclusivcly, as in the Chel. imbricata and Chel. ecouama.

In the Chel. mydas the malar approaches the mastoid very closely, and sometimes touches it by the posterior angle, thus separating the squamosal from the postfrontal ; the cxtent of the union between the squamosal and postfrontal is also shorter in the Chel. caozama than in the Chel. imbrieata. In the extent of that union (between 12 and 27) the Chel. cuncieeps resembles the Chel. imbricata, as do likewise the Chel. breviceps and Chel. longieeps. But the Chel. emneieeps differs from all the recent species in the form of the squamosal (27), which is bent upon itself, forming a slightly curved linear eminence, where the lower and smoother part of the bone is bent, and, as it were, pressed inwards towards the tympanic (28), against which it abuts. This modification is natural, not the effect of accidental pressure upon the fossil. The lower border of the malar (26), which intervenes between the maxillary and squamosal, is sharp but convex, as in Chel. caouanna, not concave as in Chel. mydas, nor nearly straight, as in Chel. imbricata. But the concave curve of the infcrior margin of the squamosal (27) most resemblcs that in Chel. imbrieata. The antero-postcrior extent of the mastoid (8) is less proportionally than in any of the recent Chelones, and it forms a smaller share of the upper border of the large meatus auditorius. The articular part of the tympanic descends below the squamosal further than in the recent turtles; and its articular surface is more convex at its outer half, and more concave at its inner half; Chel. imbricata makes the ncarest approach to the fossil in this respect. In the Chel. mydas and Chel. eaouama the articular surface is nearly flat.

As the supracranial scutella have left unusually deep and well-marked impressions on this fossil skull, I have reserved their description, and the comparison of their different forms and proportions in the scveral fossil species, to this place.

Three scutella occupy the median linc of the upper surface of the cranium in the present species of Chelone, which, from the absence of any impression along the frontal and sagittal sutures, appear to have been single and symmetrical. The anterior and smallest answers to the "frontal" scute (f_{i}) ; the next in sizc and position to the "sincipital" scute $(s y)$; the hindmost and largest answers to the "occipital" scute ($o c$), which is usually divided, and forms a pair in cxisting Chelones.

The frontal scute is long, narrow, hexagonal, broadest across the antero-lateral angles, from which the impressions extend outwards to the supraorbital margin, which divide the "fronto-nasal" scute from the "supraorbital" scute (ob).

The sincipital scute is bounded on each side by a sigmoid curve, and both before
and behind by an entering angle; it is broadest behind, and from the middle of the lateral border proceeds the transverse impression towards the baek part of the orbit, which divides the "supraorbital" seute ($o b$) from the "parietal" seute ($p a$). The oceipital scute is bounded laterally by straight lines, which slightly diverge as they extend backwards: there is no traee of an interoceipital scute. The parietal ($p a$) seute is the largest; impressions of five of its borders are preserved in the present fossil: the two exterior ones meet at an obtuse angle, a little above the middle of the meatus auditorius extermus; the antero-external border uniting with the postorbital seute (po) ; the postero-external border with the external oecipital scute ((0)).

In the Chelone brevieeps (T. I) the frontal seute is relatively larger than in the Chelone cuneiceps, and is nearly as broad as long. The sineipital seute is bounded laterally by two straight lines meeting at a very open angle, from which the transverse impression extends outwards between the supraorbital and parietal seutes. The straight lines bounding the sides of the oeeipital scute diverge from each other as they extend baekwards more than they do in the Chelone eunciceps.

In the Chelone longiceps (T. III) a still more different pattern of the supraeranial seutation is presented. The oeeipital seutes $(o c)$ are separated by an intervening interoeeipital seute (io). The lateral borders of the sincipital seute are eaeh bomnded by three lines and two angles; the antero-lateral and postero-lateral angles being eurved with the coneavity outwards; and the transverse impression dividing the supraorbital seute (ob) from the parietal scute ($p a$), proceeds from the middle of the intervening straight border of the parictal. The frontal seute ($f r$) is long and narrow, broadest behind, with its lateral horders gradually eonverging to a point anteriorly; the impression dividing the supraorbital $(o b)$ from the frontonasal seute ($f n$) proeeeds from the middle of that lateral border. Neither the division between the frontal and sincipital, nor that between the sincipital and interoccipital seutes are well marked.

The Chelone convexa (T. VI, fig. 4), like the Chelone longieeps, has an interoeeipital scute (io), and the sincipital seute (sy) has its sides bounded by three lines, of which the postcrior one is curved with its eoneavity towards the oecipital seute (oc), and so direeted as to appear to form part of the posterior rather than the lateral border ; the other two lines completing the lateral border and eonverging forwards, are divided or defined by a slight angle, from which the transverse impression proeeeds outwards, which divides the supraorbital (ob) from the parietal ($p a$) seutes. The frontal scute (fr) is a small hexagon, relatively wider than in Chel. longiceps or Chel. cuneiceps. The impression dividing the supraorbital ($o b$) from the frontonasal ($f n$) seutes proceeds from the angle between the lateral and anterior sides of the frontal scute.

The Chelone planimentum (T. IX) is peeuliar, and differs from all the foregoing speeies by the forward extension of the oeeipital seutes which join the supraorbital seutes, and thus divide the sincipital scute $(s y)$ from the parietal seute $(p a)$; the sineipital seute
is correspondingly encroaehed upon, as it were, and narrowed, its broadest part being nearer the anterior end, at the angle between its two straight lateral borders, from whieh angle the impression extends outwards that divides the oecipital from the supraorbital seute. The frontal seute ($f r$) is small and narrow, and the large supraorbital scutes meet in front of it at the middle line. They appear to be divided from the orbits by the encroachment of palpebral seutes ($p l$) upon the supraorbitary border. There appears to have been an interoecipital scute in the Chcl. planimentum, as in the Chel. Tongiceps and Chel. convexa.

Amongst existing Chelones the interoceipital seute is eonstont only in the Chel. caouanna-the loggerhead of Catesby and Brown; but the sincipital seute in this speeies is vastly larger in proportion than in any of the fossils above deseribed; and it is further distinguished by the peeuliar division of the supraorbital and parictal seutes.

In the hawks-bill turtle (Chcl. imbricata), the supraeranial seutes leave as wellmarked indentations upon the bones of the cranium as are seen in most of the fossil turtles, but the supraorbital scute is proportionably larger than in any of these, and the proportions and forms of all the other seutes are different. There are, also, two nasal scutes divided by a transverse groove from the frontonasals, which groove I have not yet met with in the eorresponding part of any of the fossil Chelonian erania.

The skull of the Chclonc cunciceps, here described, is from the London elay of Sheppy.

Chelone subcarinata. Bcll. Tab. VIII A.
The resemblanee of this speeies to Chclone subcristata (p. 24, T. VIII) is so considerable, that it has not been without some hesitation that I have ventured to deseribe it as distinct. There are, however, eertain charaeters by which it may be distinguished, and those of suffieient importance to be eonsidered as specific. On comparing it with recent speeies, and even with most of the fossil ones from the same locality, there is a remarkable evenness in the areh of the earapaee, which, with the exception of a slight carina on some of the posterior neural plates, to be hereafter mentioned, forms nearly a perfect arc of a cirele, from the extremity of the costal plate of the one side to that of the other, without that flattening of the side which is seen in most other species.

The nuchal plate (T. VIII A, fig. 1, chi) has the posterior margin arehed, and there is a short median proeess which goes to join the first neural plate (81), in whieh respeet it agrees with Chel. longiceps and with Chel. subcristata. This proeess is emarginate, to receive a slight triangular projection of the anterior margin of that plate. The first neural plate ($s 1$) forms a parallelogram, the sides not being interrupted by any costal suture; the posterior suture of the first costal plate ($p l_{1}$) extending to the second neural plate (s2). In this cireumstanee it differs from Chcl. subcristata, longiccps, and convexa, and agrees with Chel. breviccps. This, however, may possibly be a variable eharaeter here, as
it is in Chel. lonyiccps ; in one specimen of which, now before us, Professor Owen found that the articulation in question was to the anterior part of the second, instead of the posterior part of the first, neural plate; in other words, that the first neural plate was the isolated one instead of the second. The remaining neural plates are hexagonal, becoming almost regularly shorter to the eighth; the lateral angles meeting the costal sutures being nearly at the same distance from the anterior margin in each, and in no one at all approaching a regular equilateral hexagon, as in many of the neural plates in Chel. breviceps. The first three, and the anterior half of the fourth neural plates are flat; but on the posterior half of the fourth commences a low carina, which becomes highest on the posterior half of the sixth (86), and anterior half of the seventh (87). It thus differs from Chcl. subcristata, in which there is a distinct. short, sharp, longitudinal crest $\left(s_{1}\right)$ on the fifth and seventh neural plates, " and a similar" crest is developed on the contiguous ends of the second and third neural plates." The ninth and tenth neural plates are wanting in the only specimen I have seen of the Chcl. subcarinata.

The first costal plate is flat ($p / 1$), but the remaining ones, to the seventh inclusive, are slightly loollowed along the middle, being raised towards the anterior and posterior margins, where they are articulated to the contiguous ones. The whole surface of the bones of the carapace is less smooth than in most other fossil species, and conspicuously less so than in Chel. subcristata.

In describing the forms of the vertebral scutes, $(v 1-v 4)$, and of the costal ones as depending upon them, it is necessary, in order to arrive at any satisfactory comparison between these parts in different species, to bear in mind that a great change takes place in their outline during the growth of the animal; and that a vertebral scute, which, in a younger individual, has the middle of its outer margin exceedingly extended, so as to form a very acute angle, where the lateral margin of the costal scute joins it, and thus rendering it twice as broad as it is long, may in more advanced age have that angle very open, and having increased greatly in lengtl, and scarcely at all in breadth from angle to angle, the length becomes greater than the breadth. Allowing, however, for this fact, there are doubtless considerable rariations in this respect according to the different species, which are permanent and well marked. The first vertebral scute $(v 1)$ in the present species is quadrilateral, broader anteriorly; the second and third $(v 2, v 3)$ hexagonal, with the outer margins slightly waved, somewhat broader in the middle at the angles than at the anterior and posterior margins, the comparative breadth at that part being rather greater than in the corresponding scutes of Chel. subcristata, and much less so than in Chel. convexa, Chel. breviccps, or Chel. lonyiccps. The fourth vertebral scute $\left(v_{4}\right)$ is also hexagonal, but the portion posterior to the lateral angles is narrowed and produced backwards. The last of the series is fan-shaped. The outline of the costal scutes follows of course that of the vertebral ones.

The plastron, in the specimen from which this description is taken (Pl. VIII, A, fig. 2), is more perfect than in that of almost any other fossil Chelonian I have seen. It
agrees in its general form with that of Chel. subcristata, but is less extensive, as regards its bony surfaee, than in Chel. longiceps or even than in Chel. breviceps. The entosternal bone (s) is somewhat wedge-shaped, with the anterior margin triangular, and a short winged proeess on eaeh side of the anterior third of the bone extending outwards and baekwards. The posterior extremity of the bone, and the winged proeesses are dentate. The episternals (es) are aliform, tending baekwards and outwards, and inelosing between them the head of the entosternal (s), and the anterior proeesses of the hyosternal bones (hs). The latter have the anterior proeesses extending forwards on eaeh side of the entosternal, approximating at their extremity the aliform proeesses of that bone. The median or internal proeesses nearly meet on the median line, and the dentations are deep but slender; eaeh hyposternal ($p s$) unites similarly with its fellow, and the posterior proeess extends baekwards, in a long, narrow, triangular pieee, uniting with the xiphisternal (xs), whieh latter forms a very elongated rhomb, the breadth of whieh is seareely one fourth of its length, whieh in the present speeimen is no less than two inehes six lines. This form, with the elongation and narrowness of the posterior proeess of the hyposternal, gives to the hinder portion of the plastron in this speeies a narrower and more elongated outline than we find in almost any other; an approaeh to which is, however, indieated in the imperfeet specimen of Chel. subcristata figured in Plate VIII.

The external noteh, between the external proeess of the hyosternal and hyposternal, is deep and rounded. The eentral interspaee is nearly quadrate, and about half as long again as it is broad.

The only speeimen of this speeies whieh I have seen is from Sheppy, and is in the fine colleetion of J. S. Bowerbank, Esq., F.R.S.
T. B.

SUPPLEMENTAL REMARKS

ON THE

TURTLES FROM THE LONDON CLAY AT HARIWICH.

In the progress of the works now carried on in a part of the Harwich cliffs, with a view to the acquisition of the remains of the animal tissues and bone-earth which form the nodulcs that are ground up and used as manure, many remains of the Chelonian reptiles which formerly frequented the seas from which those Eocene tertiary strata have been deposited have been discovered. Mr. Colchester, of Little Oakley, Essex, who carries on large works of this kind for the "Fossil Guano," as it is tcrmed, has transmitted to me a number of the nodules in question. The most intelligible and instructive of these I have marked from 1 to 10 consecutively, and shall notice them here in the same order.

No. 1. Chelone planimentum. This is the half of an oval nodule of petrificd clay, 20 inches in length, by 17 inches in breadth, exposing an irregular group of disarticulated bones of the carapace and other parts of the skelcton. The species is determined by a fragment of one of the costal plates with the connate rib. The pláte measures $2 \frac{1}{2}$ inches in breadth, the rib 8 lines, and forms the usual partial prominence from the even surface of the under part of the costal plate. Almost the whole of the very broad but short nuchal plate is recognisable: it measures 6 inches in transverse diamcter, and only $1 \frac{1}{2}$ inch in antero-posterior diamcter. Part of the hyosternal bones, and the impression of the humerus are recognisable.

No. 2 is the half of a nodulc, 20 inches in length and 17 inches in brcadth, exposing part of the plastron, and some other bones of the skeleton of the Chel. planimentum. It shows well the natural form of the under and outcr part of the hyposternal bone, which is much more deeply excavated than in the Chel. crassicostala; the lower portion of the bone is narrower in proportion to its length, and the xiphisternals are also in proportion longer and narrower than in that specics.

No. 3. Chelone planimentum. The half of an oval nodule, 17 inches in length and 13 inches in breadth. The fracturcd side exposing a cast of the inner surface of the carapace, which measures in length from the nuchal to the tenth ncural plate inclusive $13 \frac{1}{2}$ inches ; and in breadth, across the third pair of costal plates from one end of the projecting rib to that of the oppositc side, 11 inches. The anterior contour of the
carapace is well shown in this nodule, the marginal plates whieh join the nuehal plate being preserved. The free extremity of the rib attached to the third costal plate projects 1 inch 9 lines from that plate, and measures 7 lines in breadth, where it becomes free; the breadth of the plate being nearly 2 inehes. The transverse eurve of the carapace is shown by this speeimen to be much less than in the Chel. crassicostata.

No. 4. Chel. planimentum. The nodule shows partly a east of the outer surfaee of the carapace, with part of the carapace itself. The outer angles of the third and fourth vertebral scutes are here seen with the inner angle of the third costal seute. The outer angles of the vertebral scutes are more prominent than in Chel. declivis, Chel. subcristata, Chel. subcarinata, Chel. comexa, or Chel. longiceps; they resemble most those in Chel. breviceps. The breadth of the third costal scute is 4 inches. The charaeteristic angular ridge, formed by the narrow eonnate rib, where it projeets from the lower surfaee of the costal plate, is well shown in this specimen.

No. 5. A nodule showing a east of the under surface of the carapace seen from above, apparently of the Chel. planimentum.

No. 6. A nodule, 10 inehes long 'by 9 inches broad, showing a still more imperfeet east of the under surfaee of the earapace, of apparently a younger speeimen of the Chel. planimentum.

No. 7. A fragment of a nodule showing the outer dentated extremity of the left hyosternal of the Chel. planimentum.

No. 8. A portion of a nodule, with part of the earapaee of the Chet. planimentum, showing the second to the seventh neural plates inelusive, and portions of the second to the seventh costal plates of the right side, with more or less of their bony substance broken away, exposing their eoarse fibrous elaracter, the fibres diverging on each side from the subjacent rib, as they extend obliquely towards the periphery of the earapace. The third neural plate is 2 inches 3 lines in length and 1 inch in breadth; it is crossed at its middle part by a moderately broad and deep channel, indieating the junction of the second with the third vertebral seute. The third neural plate is hexagonal; the two shortest sides being formed by the truncation of the contiguous angles of the seeond costal plates bending down a little to articulate with them. The fourth neural plate is 2 inehes 6 lines in length, and 1 inch 4 lines across the broadest part. The anterior surface is eoncave, the posterior convex ; the two longest sides eonverge towards the posterior surface, and are straight. The fifth and sixth neural plates progressively decrease in length, without a proportionate decrease in breadth. The breadth of the fourth costal plate is 2 inehes 3 lines at its peripheral extremity: its length is 6 inches; the rib projeets 2 inehes beyond it. The upper
surface of the neural and costal plates is so minutely fibrous or striated as to secm at first sight almost smooth. The upper surface of the costal plate scems naturally to be slightly concave in the direction of the axis of the carapace, but not so much as in Chel. crassicostata, and the rib is much bent lengthwise.

No. 9. Chelone crassicostata (T. XIIIA). This instructive specimen is contained in a subspherical nodule, 13 inches long by 12 inches broad, exposing a large proportion of the outer surface of the carapace, with more than one half of the circle formed by the marginal plates $\left(m_{7}-p y\right)$. The carapace has been fractured, and the ribs of the left side dislocated and pressed down below those of the right. The third ($p / 3$) to the eighth ($p / 8$) costal plates inclusive are present on the left side; the fifth to the eightlo on the right side, and the neural plates from the fourth to the pygal plate ($p y$) inclusive. The fourth, fifth, and sixth neural plates are hexagonal, with the anterolateral sides shortest, and chiefly remarkable for their great breadth in proportion to their length. The seventh and eighth are small, and more regularly hexagonal. The ninth is a broad subcrescentic platc, with the broad concave side backwards, and the space between this and the pygal plate is filled up by an cqually broad but pentagonal neural plate. The length of the ninth and tenth ncural plates, with the pygal plate inclusive, is 2 inches 9 lines. The pygal plate is subquadrangular and broadest behind, where it is slightly emarginate. The length of the fourth to the eighth neural plate inclusive is 3 inches 8 lines. The upper surface of the bones of the carapace is almost smooth. That of the costal plates is chiefly remarkable for its concavity transverscly, or in the direction of the axis of the carapace, which is to a greater degree than in the Chel. subcristata or Chel. longiceps; the lines of the sutural union of these plates with each other forming so many ridges across the sides of the carapace. The degrce of curvature or convexity in the direction of the length of the costal plate is much greater than in the Chel. plunimentum. The length of the third costal plate is $3 \frac{1}{2}$ inches, its breadth at the outer extremity, 1 inch 4 lines; the breadth of the rib where it projects beyond it is 9 lines. The margin of the plate attached to that rib is 1 inch 4 lines in length, and 8 inches in breadth. The margin of the plates gradually increases in breadth towards the posterior part of the carapace, the one joining the pygal plate being 1 inch 2 lines in breadth. The general form of the carapace of the Chel. crassicostata is shown by the present specimen to have been that of a full oval, with a gently festooned border, not pointed behind.

No. 10. Chelone crassicostata (T. XIIIB.) A still more remarkable cxample of this species was kindly transmitted to me by the Rev. S. N. Bull, M.A., of Harwich, of which a figure is given in T. XIIIB. When it first came into my hands it was an unpromising semioval nodule, 10 inches in length by 7 inches in breadth, presenting on its convex surface portions of the postcrior neural and costal plates, with their external surface entire; but no trace of plastron on the flattened side. The degree of convexity formed by the costal plates equalled that of the
most dome-shaped tortoise. The flatter surfaee of the nodule was slightly eonvex, which I thought might arise from a laycr of petrified elay adhering to the plastron. A portion of the eranium was indicated at the produced angle of the nodulc. To ascertain whether this remarkable degree of eonvexity of the earapaee, both lengthwise and transversely, was natural, I had the matrix carefully removed, with the permission of the owner of the speeimen, and the same was done on the opposite side, with a view to expose the plastron. Instead of finding a plane plastron where it was expected, in its natural horizontal position, it was found to have been erushed inwards, as represented in fig. 2, by the pressure of a hard petrified mass as big as a paving-stone, whieh had been forced in upon this part of the body of the turtlc whilst in a deeomposing state; and when finally lodged in the elay, the carapaee and plastron, as they beeame disloeated, had become more or less moulded upon it ; and thus was produeed the eonvexity whieh originally attracted my attention. In the breadth of the eomnate rib, as eompared with that of the eostal plate, in the extent of the free extremity of the rib, in the degree of eoneavity of the upper surfaee of the eostal plate and the eurvature lengthwise, the distinetive eharaeters of the Chel. crassicostata are well shown. The same characters are likewise presented by the parts of the plastron, as in the breadth of the xiphisternals ($x s$), the eurvature of the hyosternal ($/ \mathrm{ls}$), and the form of the eoracoid. The two seapulæ, with the eonnate acromial clavicles, are prescrved, with the head of one of the humeri. A part of the basis cranii, showing the broad diverging pterygoid, with their characteristieally-channeled inferior surfaee, is shown in fig. 2; thesc grooves are not so deep, however, as in Chel. longiceps, but are more like those in Chcl. cuncicops.

I beg to record my obligations to Mr. Bowerbank for the suggestion, and to Mr. Bull for his ready response to it, to which I owe the opportunity of examining this speeimen of the thiek-ribbed turtle of the Harwich eliffs.

A fossil mandible of a Chelonian, in the eollection of the Marehioness of Hastings (figured, of the natural size, in T. XIXD, figs. 1 and 2), most resembles that part in the genus Chelone by its general form and proportions, and especially by the configuration of the biting and grinding surfaee of the jaw (fig. ©). The symphysis is eonfluent; convex in both directions below; longer than in the Chel. mydas and the Chel. Dreviceps of Sheppy (T. I, fig. 3, 32) ; but not so long as in the turtles from Harwich (T. IX, fig. 1, and T. XI, fig. 3) and Brackleslam, or as in the Chelone longiceps of Sheppy. The rami diverge more from each other than in the lower jaw of the Chel. convexa (T. VII, fig. 3) of Sheppy.

A ridge, commencing at the fore part of the upper surface of the symphysis, passes baekwards, and divides the two ridges, diverging and circumscribing with the outer sharp margins of the jaw an elliptical concave space on each side; the space between the diverging ridges is raiscd and rough : this part has been fractured. In the Trionye, of whieh genus so many fine examples have been met with at Hordwell, the upper part
of the sympliysis presents an uniform concavity; and this part of the jaw is narrower and more produced. I have not yet seen the mandible of any Emydian or landtortoise resembling the present fossil so closely as some of the marine species above cited. A large species of Emys has, however, left its remains in the same deposits at Hordwell as the Trionyces next to be described.

A retrospect of the facts above detailed, relative to the fossil Chelonians of the genus Chelone, or marinc family of the order, leads to conclusions of much greater interest than the previous opinions respecting the Chelonites of the London clay could have suggested. Whilst these fossils were supposed to have belonged to a fresh-water genus, the difference between the present fama and that of the Eocenc period, in reference to the Chelonian order, was not very great; since the Emys or Cistuda Europea still abounds on the continent after which it is named, and lives long in our own island in suitable localities. But the case assumes a very different aspect when we come to the conriction that the majority of the Eocene Chelonites belong to the true marine genus Chelone; and that the number of species of these extinct turtles already obtained from so limited a space as the Isle of Sheppy, exceeds that of the species of Chelone naw known to exist throughout the globe.

Notwithstanding the assiduous search of naturalists, and the attractions to the commercial voyager which the shell and the flesh of the turtles offer, all the tropical seas of the world have hitherto yielded no more than five* well-defined species of Chelone; and of these only two, as the Chel.mylas and Chel. caozama, are known to frequent the same locality.

It is obrious, therefore, that the ancient ocean of the Eocene epoch was much less sparingly inhabited by turtles; and that these presented a greater variety of specific modifications than are known in the seas of the warmer latitudes of the present day.

The indications which the English eocene turtles, in conjunction with other organic remains from the same formation, afford of the warmer climate of the latitude in which they lived, as compared with that which prevails there in the present day, accord with those which all the organic remains of the oldest tertiary deposits have hitherto yielded in reference to this intcresting point.

That abundance of food must have been produced under such influences cannot, of course, be doubted; and we may infer that, to some of the extinct species, which, like the Chel. longiceps and Chel. planimentum, exhibit either a form of head well adapted for penetrating the soil, or with modifications that indicate an affinity to the Trionyces, was assigned the task of checking the undue increase of the now extinct crocodiles and gavials of the same epoch and locality, by devouring their eggs or their young ; becoming probably, in return, themselves an occasional prey to the older individuals of the same carnivorous Saurians.

[^10]Family-Fluvialia.
Genus-Trionyx.

The Chelonian Reptilcs called "Soft Tortoises," forming the genus Trionyr of Geoffroy St. Hilaire,* and the family Fluvialia seu Potamites of MM. Duméril and Bibron, \dagger resemble those of the genus Chelone (family Marina scu Thalassites, Dum. and Bibr.) in the extremity of the vertebral rib, or plcurapophysis, projecting freely from below the end of the connate costal plate, \ddagger and in having the plastron incompletely ossified; but they are characterised by the still more incomplete ossification of the margin of the carapace, which retains much of its primitive soft, cartilaginous state ; and they arc further distinguished by the reduced number of the toes-three on each foot-which are armed with claws, the other two toes serving to support a swimming web ; the name of the genus has refcrence to this peculiarity.

The head is depressed, elongated, and, in the recent animal, the nostrils are prolonged into a short tube, terminated by a small fleshy appendage like an elephant's proboscis. The outer surface of the dermal bones of the carapace, and of the corresponding parts of the plastron, is variously sculptured, usually by simuous grooves and rugosities, as if wormeaten ; and to such a degrec in some specics, as to give the parts a tuberculate charactcr. The cuticle is soft and flexible, not developed into scutcs; and there are accordingly no impressions like those that indicate the presence of the "tortoise-shell" plates in the skeleton of the cxisting turtles and in the petrified plastrons and carapaces of the extinct species of the marine family.
"Hithcrto," write the meritorious authors of the claboratc 'Erpételogic Générale,' one has not observed any specics of this family (Potamites) in our European rivers; all those which have been described, and of which the habitat is known, have come from the streams, rivers, or great fresh-watcr lakes of the warmer regions of the globe." (Tom. ii, p. 469.) The beautifully-prescrved cvidences of the species about to be described, which have chicfly becn obtaincd by the Marchioness of Hastings from one limited locality, attest the abundance of the Trionyces in the fresh-waters of our latitudes during the Eocene period of geology.

The characters by which MM. Wagler and Duméril have divided the species of

[^11]Trionyx, Geoffr., into two genera, are not such as can be decisively recognised in the fossil carapace. A diffcrence of convexity of that part by which the "Cryptopodes" are said to differ from the Gymnopodes, is not one that the comparative anatomist and palæontologist would recognise as valid for the distinction proposed.

Upon the whole, the fossil specimens in which that character can be compared, agree rather with the Gymnopodes of Dum. and Bibr., but with a range of diversity which is exemplified by Tab. XVI. A, and XVII. So much of the plastron as I have becn able to compare, agrees likewise with the boncs of that part in the Gymnopodes, but, in the absence of morc ccrtain characters, and with doubts as to the neccssity or desirableness of the subdivision proposed for the recent species, I shall retain the name Trionyx for all the fossils that manifest, in their petrified remains, the characters of the Gcoffroyan genus.

In the second part of my 'Report on British Fossil Reptiles' I showed that certain fossils of the Wealden formation and of the Caithness slate (new red sandstone) had been referred erroncously to the genus Trionyx, and that the only unequivocal remains of that genus which had been seen by me at that period (1841) were from Eocene deposits at Sheppy, Brackleshain, and the Isle of Wight, in which latter locality they were associated, as in the Paris basin, with remains of the Anoplotherium and Palcotherium.

I have since had the opportunity of examining fossil specimens of Trionyx from other localities, but always, however, from formations of the Eocene period, and I shall commence their description with onc of the most perfect and bcautiful examples of these Chelonitcs, which was obtained by the Marchioness of Hastings from the Eocene sand of the Hordwell Cliff, Hants.

Trionyx Henrici. Owen. Tab. XVI.

Report of the Seventeenth Meeting of the British Association, 1847, p. 65.
Although the characteristics of the genus are readily recognisable in fossil fragments of the carapace and plastron, from their comparative flatness and the sculpturing of the outer surface, the specics of Trionyw are with difficulty determinable, if at all, from such specimens; and it is usually necessary to have a considerable part of the carapace, in order to ascertain its composition, contour, and degree of convcxity. Some species, indeed, e. g. Trionyx rivosus (T. XVIII A), Trionyx maryinatus (T. XIX*), together with the Triomyx spinosus* and Trionyx sulcatus of Kutorga, would seem to be characterised by particular patterns of the irregular surface of the bones of the carapace, which character, therefore, a fragment may suffice to manifcst; but this is not the case with the ordinary rugose and vermiculate species. Cuvier accordingly

[^12]admits, with respect to the portions of Trionyx found abundantly in the gypsum of the environs of Paris, associated with the Palæotheres, Anoplotheres, and other extinct animals of the Eocene epoch, that he could find nothing in those fragments to authorize him to fix their specific characters.* The compilers of the labours of palæontologists have, as usual, been affected by no such scruples, and have not hesitated to assume a knowledge, which Cuvier did not fcel himself entitled to claim, viz. that of the fact of the spceific distinction of the Trionys of the Montmartre quarries : but I do not find that they have added anything to its history except the name of Tri. Parisiensis. It is probable, from the analogy of our own Eocenc deposits, that more than one specics of Trionyx may have left its remains in the Parisian localities of the corresponding geological formation.

The fossil remains of Trionyx from the tertiary deposits of the Gironde, \dagger Lot-etGaronne, ${ }_{*}^{*}$ Montpellicr, and Avary, were not sufficiently characteristic to permit the great anatomist and founder of Palæontology to infer more than the existence of the particular genus of fresh-water Chelonia in question in those formations. The only specimen of fossil Trionys in which Cuvicr recognised characters distinguishing it from the known existing species, is that which M. Bourdet first described the name of Trionyx Maunoir, from the Eocenc quarries at Aix. Cuvicr has given reduced views of a large proportion of its carapace and half its plastron in the 'Ossemens Fossiles,' tom. v, pt. ii, Pl. XV, figs. l and 2. This deseription and the figure of the carapace serve to clucidate by comparison the characters of the more perfect specimen of Trionys here deseribed from the Eocene of Hordwell.

In the first place, the contour and proportions of the entirc carapace of the Tri. Henrici differ from those of the Tri. Maunoir. The carapace of the Tri. Henrici, which is formed, as usual, by the neural plates ($s 1, s 2$, \&c.) and eight pairs of costal plates ($p l_{1}-8$), measures 10 inches 8 lines in length, and 11 inches 2 lines in breadth, in a straight line across the third ($p / 3$) costal plate, where it is widest. In Tri. Maunoir, the neural plates (plaques vertébrales) risc a little above the plane of the carapace, as in the Tri. ferox (Tri. carinatus, Geoffr. $\|$) : in the Tri. Henrici there is no trace of this carinate structure ; the neural plates are flat, and on a level with the broad costal plates articulated with them ; in which characters it resembles the Tri. gangeticus, Cuv., and Tri. javanicus, Cuv.

The first costal plate ($p l_{\mathrm{l}}$) is broader than it is long in Tri. Maumoir; in Tri Itenrici its breadth is little more than half its length, and decreases as it recedes from

[^13]the neural plate. The seeond costal plate, on the contrary, is broader at its lateral than at its mesial end in Tri. Henrici, whilst its breadth is equal at both ends in the figure given by Cuvier of the Tri. Maunoir. The thiekness of the costal plates, in proportion to their breadth, is shown in T. XIX B, figs. 4 and 5 ; the degree of projeetion of the eonnate rib from the inner surfaee of the eostal plate is given in figure 6. The peripheral border of the earapaee is not grooved in this species, as in the Tri. circumsulcatus, fig. 3 .

The degree of transverse convexity of the carapace of the Tri. Henrici is the same as that of the Tri. Ayyptiacus, and as that attributed to the Tri. Mamnoir.*

The nuehal plate is wanting in Lady Hastings's specimen; the one which is figured in T. XVI, fig. 3, is from the same locality at Hordivell, but does not belong to the earapace, fig. l, although it has probably belonged to one of the same species, from the contour of its hinder border.

The first neural plate ($(81$) does not project beyond the adjoining anterior borders of the first eostal plates ($p l_{1}$) as it does in Tri. subplanus, Tri. ferox, and Tri. javanicus; nor do those borders, as they recede from the neural plate, eurve forwards beyond it, as in Tri. javanicus \dagger and Tri. coromandelicus. \ddagger

The anterior border of Tri. Henrici is slightly concave and gently undulated, as in the Tri. Agyptiacus, and is also rough and sutural, showing that the anterior azygos or nuehal plate (" pièee impaire," Cuv.) had been immediately articulated with it, as it is in Tri. Egyptiacus. $\$$

The fossil specimen of the nuehal plate, figured in T. XVI, fig. 3, shows, by the sutural structure of its posterior border, that it artieulated with the anterior sutural border of the earapace to whieh it belonged, and which, as already remarked, belonged probably to the species Tri. Menrici, though not to the individual the earapace of which is figured in T. XVI, fig. 1.

The neural plate ($n 1$) is longer in proportion to its breadth, and the eorresponding costal plates ($p l_{1}$) are narrower at their extremities than in Tri. Egyptiacus. The sceond costal plates ($n 2$) are broader at their extremities than in Tri. Agyptiacus; they resemble those in Tri. sulplanus.||

The first four neural plates in Tri. Henrici slightly expand posteriorly, and have their posterior angles cut off; the fifth ($n 5$) is a narrow plate with entire angles; the sixth ($n 6$) is expanded anteriorly, and has its anterior angles eut off ; the seventh (n_{7}) has also its anterior angles cut off, but is rounded behind, and, as it were, obliterated by the extension of ossifieation from the costal plates into the dermal cartilage above

* "Sa convexité transversale est telle, que la flèche de l'are est moindre du cinquième de la corde." (Cuvier, Ossemens Fossiles, tum. v, pt. 2, p. 223.)
+ Anuales du Muséum, tom. xiv, pl. 3, d.
\ddagger Ibid., pl. 5, fig. 1 .
§ Ibid., pl. 2, A, a.
|| Ibid., pl. 5, fig. 2.
the neural spines. The eighth neural plate is wholly obliterated or superseded by a similar eneroaehment and union of the eighth pair of eostal plates ($p / 8$). Almost the same modifieation is represented by Geoffroy in the earapaee of the Tri. Agyptiacus; ** but the general proportions of the earapaee of the Tri. Henrici are more like those in the Tri. subplanus, in whieh the eighth neural plate exists in the interspaee of the eighth pair of eostal plates, as it does likewise in Tri. Mannoir.

All the exterior surfaee of the expanded parts of the neural spines and ribs is roughened or seulptured with a moderately fine vermieular pattern, the undulatory grooves having a tendeney to a eoneentrie arrangement at the peripheral surfaee of the carapaee, and in general passing uninterruptedly from one eostal plate to another : the pattern is effaced from about one third of an ineh of the border of the earapaee, whieh presents a surfaee like that of a eoarsely-woven eloth. The extreme border is rather suddenly bevelled or rounded off from above downwards, and is thinner than the border of the eostal plates that artieulates with the neural plates. The natural extent of the ordinary narrow extremities of the ribs eannot be determined from the present speeimen of the Tri. Henrici; they form the usual slight relief along the middle of the smooth under surfaee of the eonnate eostal plates; and do not subside at any part of their eourse to the level of the under or inner surfaee of the plate.
T. XVI, fig. l, shows the upper surfaee of the earapaee of the Mri. Henrici, half the natural size.

Fig. 2, in outline below, gives the eurve and degree of transverse convexity aeross the middle of the earapaee.

Fig. 3, the nuehal plate of apparently the same speeies of Trionyx, half the natural size.
'T. XIXB, fig. 4, shows the outside view of the third costal plate, right side, natural size ; fig. 5 , sutural border of the same plate, showing its thiekness and the degree of eurvature ; fig. 6 , the peripheral border of the same plate with the connate rib.

All these speeimens were diseovered by the Marehioness of Hastings in the Eoeene sand at Hordwell, and are preserved in her ladyship's Museum at Efford House, near Lymington, Hampshire. The speeies is dedieated to her ladyship's husband, Captain Henry, R.N.

In the figure of the earapaee of the Trionys (Tri. subplanus) in Cuvier's pl. xiii, fig. 5, 'Ossemens Fossiles,' tom. v, pt. ii, the eostal plates do not bear the same numbers as the eorresponding neural plates; the anterior eostal plate is marked a_{1}, whilst the corresponding neural plate is 62 ; the rib or pleurapophysis of the first dorsal vertebra, whieh is marked c_{1}, is short, and is applied to the under and fore part of the seeond rib whieh supports the first eostal plate. In T. XVI, the dermal ossifications of the carapaee bear the same letters and numbers as the homologous parts in the previous plates, and in the woodeut, fig. 1, p. 3.

$$
\text { * 1lid., pl. 2, } A \text {. }
$$

Trionyx Barbaree. Owen. Tab. XVIA.

This speeies, like the Trionyx Henrici, is most satisfaetorily and beautifully represented by an entire earapaee in the collection of the Marehioness of Hastings, to whose indefatigable researehes in the locality of the Eoeene sand at Hordwell Cliff, its diseovery is due, and by whose skill, taet, and patience it has been faithfully restored from its original fragmentary state.

The earapaee is more slender in proportion to its length, and deeper or more ennvex in proportion to its breadth, than in the Tri. Henrici. In this speeies, as is shown in T. XVI, the breadth is greatest towards the fore part of the trunk; in the Tri. Barbara this is the narrower part, and inereases in breadth towards the middle of the earapaee ($p l_{4}$).

The antero-posterior diameter or length of the nuehal plate is greater in proportion to its transverse diameter or breadth, and the arehed ridge on its inner surface is less strongly developed than in Tri. Henrici. On the outer surfaee the smooth anterior border, where the plate would seem as if eut away obliquely to an edge, is more extensive in eomparison with the rough, worm-eaten surface in the Tri. Henrici (T. XVI, fig. 3), or those in the nuehal plate of Tri.incrassatus, T. XVIII, fig. 1, ch. The median part of the anterior border is more deeply exeavated, and the lateral borders less deeply dentated in the Tri. Barbara.

The whole of the posterior border of the nuchal plate is thiek, sutural, and is artieulated to the first neural plate and the anterior eostal plates ($p l_{1}$); the middle part extending baekwards to unite with the neural plate, by whieh also Tri. Burbara differs from Tri. Henrici.

The first neural plate is shorter and broader in proportion to the length of the eostal plates than in the Tri. Menrici, but presents a similar shape, the sides being parallel, and the posterior angles truneate; in the three sueceeding neural plates the sides eonverge towards the anterior end, but the posterior angles continue to be eut off. The fifth neural plate is oblong and quadrangular, as in Tri. Menrici, T. XVI. In the sixth neural plate the fore part is the broadest, and its angles are truneate; the seventh is a subtriangular and not fully-developed plate; the eorresponding pair of eostal plates meeting behind it. The eighth pair of eostal plates ($p / 8$) similarly supersede and take the place of $s 8$, by meeting and joining at the middle line, but the left is the broadest, not the right.

The first eostal plate ($p l_{1}$) is longer in proportion to its breadth (or anteroposterior diameter), whieh is also more equally preserved throughout its length than in the Tri. Henrici, and the eonnate smooth rib is less prominent on its under surfaee. The inner and anterior angles of this surface do not show the depression formed by the head of the vertieal scapula, which is present in that part of the stronger Tri. Henrici.

A well-marked distinctive character is also afforded by the seventh costal plate ($p / 7$), from which the free end of the connate rib projects at the anterior angle of the dilated end in Tri. Barbara, and the free border of that end describes a straight line transverse to the axis of the carapace.

The frce borders of the eighth pair of costal plates are on the same transverse line, and the postcrior part of the carapace is censequently truncate and straight.

The latcral margin of the carapace is more gradually bevelled down, and to a less obtuse cdge than in the Tri. Henrici.

The length of the carapace of the Tri. Barbara, from the fore part of the first neural plate to the hind border, is nine inches and a half; the greatest breadth of the carapace, in a straight line across the fourth pair of costal platcs, is ninc inches ten lines. The total length of the carapace is eleven inches and a half.

The free end of the connate rib projects entire from the fifth, sisth, and seventh costal plates.

The character of the sculpturing of the outer surface of the costal plates is very similar to that in the Tri. Menrici: the tendency to the concentric arrangement of the raised lines is cqually well marked in Tri. Barbara, and is accurately given in Mr. Erxleben's beautiful plate.

The carapace is not only more arched transversely, but it differs from that of Tri. Henrici in being slightly depressed along the middle linc, as is indicated in fig. 2, T. XVIA.

This beautiful specics of Trionyx is dedicated, with much respect, to its accomplished discoverer, Barbara, Marchioncss of Hastings, and Baroness Grey de Ruthyn.

Trionyx incrassatus. Owen. Tab. XVII, XVIII, and XIX.

This species of Trionyx, from Eocenc formations of the Isle of Wight, resembles in general form the Tri. Henrici of the Hordwell sand, but differs from it in the anterior internal angle of the first costal plate ($p l_{1}$, T. XVII and XVIII) being cut off, like that of the second and succeeding costal plates: it also differs in the greater length of the sccond costal plate as compared with the breadth of its outcr end, and in the greater breadth of the outer end of the sixth costal plate (pl6, T. XVII), the outer or terminal border of which is morc convex. The nuchal plate (ck, T. XVIII) articulates with the whole antcrior border of the first neural (s_{1}) and costal plates ($p l_{1}$), but sends backwards a process from near the middle of its posterior border, which fits into the space left between the truncated antcro-internal angles of the first costal plates and the first neural platc. In this respect it resembles the nuchal platc of Tri. Barbara (T. XVI A), but the difference of gencral shape between this more delicately formed species, and the onc under consideration, is wcll marked, and decisive as to thcir specific distinction. The
anterior border of the nuehal plate of Tri. incrassatus is smooth, slightly channeled, and feebly emarginate at the middle part; the plate sends out three short, tooth-like processes on each side; the posterior angle forms a fourth process which artieulates with the true costal part, or end of the second rib, connate with the first eostal plate ($p l_{1}$). The first neural plate (81, T. XVIII) is rather broader in proportion to its length than in the Tri. Henrici. The second (s2) and third (s3, T. XVII) do not expand so mueh behind; the vermieular pattern is broken into distinct tubercles upon these plates. The posterior lateral sides of the hexagonal neural plates are relatively longer than in those of Tri. Menrici. The fifth neural plate (85, T. XVII) extends backwards beyond the fifth pair of eostal plates ($p / 5$, compare with T. XVI) and articulates with the sixth pair of eostal plates; but the eighth and part of the seventh neural plates are superseded by ossifieation, extending from the seventh and eighth pairs of eostal plates to the median line, where those plates articulate with each other, as in the Tri. Henrici and Tri. Barbara. The inner surface of the nuchal plate (ch, fig. 2, T. XVIII) is divided by a transverse, slightly interrupted ridge, gently eoneave backwards, into two nearly equal parts; the posterior one being most exeavated. The inner surface of the first costal plate ($p l_{1}, \mathrm{~T}$. XVII and XVIII) presents the prominence (c2) left by the fracture of the vertebral end of the seeond rib, where it becomes connate with that plate, and also the oblique ridge ($c 1$) formed by the attachment of the expanded end of the first short rib. The free end of the second rib (c2) is short, obtuse, depressed, convex above and flat bclow; the body of this rib las subsided to the level of the inner smooth surfaee of the costal plate, with which it has beeome completcly blended. A small portion of the body of the seeond vertebra is preserved in connexion with the long neural arch, showing that it was slightly carinate at the under surface. The breadth of the third rib ($c 3$), where it beeomes connate with the second costal plate ($p / 2$), is rather more than one third the breadth of that part of the plate ; the rib at first sinks almost to the level of the under surface of the plate, and then gradually rises, increasing in breadth to its free extremity. The true pleurapophysial portions of the suececding costal plates ($4,5,6,7,8$, and 9 , T. XVII) are better defined by outline grooves, but their degree of prominence is slight, except in the last pair (9), which have been liberated from the superincumbent costal plates ($p / 8$) before they reached their posterior borders.

The minute accuracy and beauty of Mr. Erxleben's lithographs supersede the neeessity of further verbal deseription of these rare and singularly well-preserved fossils.
T. XVII gives an inside view of the almost entire carapace of the Tri. incrassatus; and T. XVIII gives an outside (fig. 1) and an inside view (fig. 2) of the fore part of the carapace of the largest individual of the same speeies of Trionyx, from the Isle of Wight, showing the nuehal plate ($c / 1$) in its natural artieulation with the anterior neural and costal plates.

One eharaeter by whieh these earapaees differ from those of the Tri. Henrici or Tri. Barbara is the abrupt, almost vertical, border of the earapaee, whieh is formed by the peripheral ends of the costal plates: these inereasing in thiekness as they approach that end, render the border charaeteristically thiek: the specifie name-incrassatus-has reference to this strueture. The border is not grooved, and it is slightly produced above the projecting end of the subjaeent rib, where it slopes a little down to the connate rib (T. XVIII, fig. 1). This strueture will serve to distinguish a detached costal plate of the Tri. incrassatus from one of the Tri. circunsuleatus (T. XIXB, figs. $1,2,3$) ; and the vertieality and thiekness of the margin will equally distinguish it from one of the Tri. Ilenrici or Tri. Barbara.

The chief value of the speeimen (figured in T. XIX) is derived from the fact, that several other boncs of the same skeleton were diseovered with it; and these I next proeeed to describe.
T. XIX, fig. 1, is the entosternal picee of the plastron, having the characteristie form of the chevron ; it is broadest and most compressed at the median junction of the two crura, whieh increase in thiekness and diminish in breadth as they diverge. The branches are relatively more slender than in the Tri. Ayyptiacus* and Tri. Javanicus; \dagger they rescmble those of the Tri. carinatus \ddagger and Tri. ganyeticus. §.

Fig. 22^{\prime} is the lower braneh of the left cpisternal : it is slender, gradually tapering to a point, flattened above or on the inner surfaec, convex behind, grooved along the margin next the entosternal. This pieee, in its length and slenderness, resembles the eorresponding part in the Tri. carinatus and Tri. gangeticus.

Fig. 3 3' is the left hyposternal and part of the left hyosternal; the latter (hs) includes the mesial border, showing the relative extent of the angular part that sends off the ridged tooth-like processes, which are two in number, the anterior one notched or subdivided. The cxterior, connate, rough, and tubereulate dermal plate stops at the base of these processcs. The hyposternal ($p s$) has the nearest resemblance to that of the Tri. gangeticus figured by Cuvicr,\| but differs by the number of short toothed proeesses from its median and inferior border, and by the more slender base supporting the two long, lateral, striated, pointed processes. The tuberculate dermal plate covers all the exterior of the hyposternal to the roots of the pointed processes. The noteh for the reecption of the xiphisternal is rounded at the bottom.

Fig. 4 shows the long, rib-shaped, but straight scapula (51); its head forms two thirds of the glenoid cavity for the humerus; the body, flattened behind, eonvex in front, gradually eontraets as it asecnds, and terminates in an obtuse point; the

[^14]clavicular process (58) is shorter than the scapula, and slightly expands at its extremity. Both parts are longer and more slender than the homologous ones of the recent Trionyx figured by Cuvier.*

Fig. 5. The coracoid has the expanded, slightly curved form characteristic of the genus; it is not so broad as that figured by Cuvier. \dagger

Fig. 6 is the iliac bone, short, thick, curved, subcompressed, attenuated and striatcd at its sacral extremity; the enlarged articular end is divided into three facets: two oblong and rough for sutural junction with the ischium and pubis; one smootl, and the smallest of the three, for the acetabulum.

Fig. 7 is the almost entire right femur ; its convex, long oval head, bends inwards from between the two trochanters, of which the external and largest is broken off. The shaft bends backwards, and gradually expands to the feebly divided convex condyles. All the characteristics of the modifications of the femur in the Trionys are here preserved.

Fig. 8 is a claw-bone, natural size.
Fig. $99^{\prime} 9^{\prime \prime}$ are three vicws of the sixth cervical vertebra of the same Trionyx. This may be recognised by the broad, depressed, posterior surface of the centrum, partially divided into two cavitics, side by side (c^{\prime}) ; the seventh cervical has the two cavities there quite scparated from each other ; the fifth and preceding cervicals have the postcrior surface of the centrum with a single cavity ; so that the sixth cervical is the only one which has a single convexity in front (c, fig. 9^{\prime}), and a double concavity (c^{\prime}, fig. $9^{\prime \prime}$) behind. The body is long, slender, compressed in the middle, with onc median inferior ridge anteriorly, and a pair of inferior ridges posteriorly ending in hypoplysial tuberosities (fig. 9, yy), which support, as it werc, the posterior articular cups. A short, obtuse diapophysis projects from each sidc of the fore part of the centrum. The prczygapophyses (z) support slightly convex, oblong, articular surfaccs; the zygapophyses (z^{\prime}) are long, divcrge, and support concave, oblong surfaces looking downwards. There is no spine; the neural arch is completc above the middle third of the centrum, the canal cxpanding towards both its wide, oblique outlets; this modification of course relates to the great extent of motion betwcen contiguous vertebræ, and the neccssity for providing against compression of the myelon during their rapid inflcctions and extensions.

The specimens of Tri. incrassatus here described are prescrved in the Muscum of the Marchioness of Hastings, by whose kind and liberal permission thcy, with other rare Chelonites, have been described and figured for the present Monograph.

[^15]
Trionyx marginatus. Owch. Tab. XIX+.

A more obvious character than that pointed out at the peripheral border of the costal plate in Trionyx incrassatus, and serving better and more readily to determine such elements of the carapace, is the ridge with minute parallel striæ, which extends along the upper surface, close to the anterior and posterior borders of the costal plates in the species of Trionyx which I have on that account distinguished by the specific name of marginatus.

Mr. Erxleben has well given this character in the reduced view of the earapace (T. XIX +).

The border-pattern gradually becomes narrower and fades away before it reaches the outer end of the costal plates; it is also wanting on the anterior border of the first costal plate ($p l_{1}$), and on the posterior border of the last ($p l 8$).

The outer ends of the costal plates, which constitute the greater portion of the periphery of the carapace, are at first slightly bevelled off, and then vertically truncate ; the sloping or bevelled part having the fine fibrous surface, which I have compared to coarse linen eloth. The vertical part of the border is slightly exeavated in the fifth and sixth costal plates, but not so deeply as in the Tri. circumsulcalus, nor is the margin so thick in proportion to the length of the plate.

The neural plates are relatively smaller, in eomparison to the costal plates, than in any of the foregoing species, but they agree in number; the cightl being suppressed, and the seventl reduced, in the same proportion as in Tri. IIcurici and Tri. Barbara, by the median union of part of the seventh pair and of the eighth pair of costal plates. The fifth neural plate presents a simple oblong quadrilateral figure; the four neural plates in advance are six-sided, the two additional and shortest sides being formed by the truncation of the posterior angles; the sixth and seventh plates, on the contrary, have their anterior angles cut off. This modifieation in the form of the neural plates, and in their mode of juncture with the costal plates, relates to the opposite eurvatures or inclinations of the costal plates, in the direction of the axis of the carapace: the anterior ones bending forwards, the posterior ones backwards, in addition to the eurve common to all but the last pair of plates, transversely to the axis of the carapace, with the concavity downwards or towards the thoracie-abdominal chamber. The anterior internal angle of the second, third, and fourth costal plates is cut off; the posterior internal angle of the sixth, and both internal angles of the fifth pair of plates (pl5).

In these modifications of the form of the neural and costal plates, the Tri. marginatus agrees with the Tri. Hcurici and Tri. Barbara, and differs from the Tri. incrussatus, in which all the neural plates but the seventh are six-sided, with the posterior internal angles truncated. Each of the costal plates, therefore, of the fifth
pair, in the Iri. incrassatus, differs from those of the three other species of Triouys here described, in having only the antero-internal angles truncated, instead of both these and the postero-internal ones.

In the form and general proportions of the first pair of costal plates, the Tri. marginatus shows an intermediate character between the Tri. Henrici and Tri. Barbara; in the great breadth of the peripheral end of the seventh pair of costal plates it differs in a well-ntarked degree from both species, and especially from the Tri. Henrici, which it most resembles in its general contour. In the Tri. incrassatus the seventh costal plates maintain nearly an uniform breadth from end to end.

The antero-postcrior diameter of each of the triangular plates of the last costal pair excecds the transverse diameter, whilst these proportions are reversed in Tri. Henrici; the difference in part depeuding on the different form of the posterior border of the carapace in the Tri. marginatus, which is truncated; the free borders of the last costal plates forming a straight transverse line. The marginal pattern of the costal plates may be traced in a slighter degree round the neural plates.

The reticular sculpturing is better defined, and of a coarser pattern in the Tri mar gimatus than in any of the previously defined species.

The middle line of the carapace is slightly depressed, as in the Tiri. iucrassatus. The gencral degree of convexity of the carapace, which is less than that in the Tri. Honrici and Tiri. Barbara, agrees also with that of the Tri. incrassatus.

The length of the carapace from the fore part of the first neural plate is cleven inches; its greatest brcadth, across the suture between the third and fourth neural plate, is twelve inches.

This species is from the eocene deposit at Hordwell Cliff, Hampshire: it was discovered by the Marehioness of Hastings, and is preserved in her ladyship's collection at Efford House.

Trionyx rivosus. Owen. Tab. XVIIIA.

This beautiful species of Trionyx, also discovered by the Marchioness of Hastings in the Eocene beds at Hordwell Cliff, has fortunately a characteristic pattern of sculpturing, which, like that in the Tǐ. marginatus, would serve for the determination of detached portions of the carapace. Any of the costal plates, for example, of the posterior half of the carapace, figured in Tab. XVIII A, might be distinguished by the sub-parallel longitudinal, and more or less wavy ridges, superadded to the more common reticulate sculpturing from the homologous parts of the carapace of any of the preceding fossil species of Trionyx, and, so far as I have yet seen, from any of the recent species.

The ridges in question, it will be understood, are longitudinal in respect of the
entire earapace; they would be transverse to the long diameter of the detaehed costal plate; they beeome more wavy as they recede from the neural plates. Of these only the sixth ($s 6$) has been preserved in the speeimen described; it differs in shape from that in any of the foregoing speeies, in being broader in proportion to its length; its greatest breadth being, as in Iri. Henrici, Tri. Barbara, and Tri. marginatus, across its anterior fourth part. The fifth neural plate, as in the species above cited, has been an oblong quadrate one, the fourth plate has had its postero-internal angles cut off, contrariwise to the sixth. The fifth costal plates have aceordingly the same charaeter of truneation of both their internal angles, though less marked anteriorly. A portion of the seventh and the entire cighth neural plates have been superseded, as in the other fossil Trionyces, by the median growth and junction of the seventh and eighth pairs of eostal plates.

In the forms and proportions of thesc plates the present speeies agrees best with the Tri. Henrici and Tri. incrassatus; the latter species differs from it by the breadth and convexity of the sixth costal plates (pl6). The smooth eonnate ribs ($5,6,7$), shown on the under surface of the costal plates, T. XVIIL A, fig. 2, preserve a more uniform diameter, and do not expand in the degree shown in the Tri. incrassatus, T. XVII, $5,6,7$; the rib (8) attaehed to the costal plate ($1 / l_{7}$) is straighter in Tri. rivosus than in Tri. incrassatus.

The projecting cxtremities of the ribs are beautifully preserved in the specimen of Iri. rivosus here deseribed: their greater length, as compared with those attaehed to the fifth, sixth, and seventh eostal plates in Tri. Barbare (T. XVI A), depends upon the nonage of the present specimen, which is figured in T. XVIIIA of the natural size.

The peripheral borders of the eostal plates are bevelled off obliquely from above downwards, and project a little where they join the cnd of the subjaeent rib; the surface of this is finely and longitudinally striated. The retieulate sculpturing of the earapace extends to the sloping peripheral border, as it does to the vertical thick border of the earapaec in Tri. incrassatus; it is not separated from the border by a marginal decussating fibrous surface, as in Tri. marginatus, Tri. Henrici, and Tri. Barbara.

The longitudinal ridges of the carapace, which form the chief distinctive character of the Tri. rivosus, offer an intercsting though slight approach to the main feature of the earapace of the Luth or coriaceous soft turtlc (Spargis coriacea); but in this existing species the longitudinal ridges or carine are straighter and more elcvated, and the surface of the carapacc is smooth at the intcrspaces. The less parallel and wavy course of the ridges in the present extinct Trionyx give a sinuous course to the intercepted spaces, like the furrows left by streams of water which have temporarily coursed over a sandy surface, whenee the name " rivosus" proposed for the species.

Trionyx planus. Owen. Tab. XIX C.
This species, like the Tri. rivosus, is represented by the posterior part only of the carapace, but the distinguishing characters are so well marked in it as to leave no doubt respecting the difference of the species from that of any of the above-defined Trionyces. The specimen consists of the last four pairs of costal plates, which are flat, with a coarse reticulate pattern on their upper surface, worn away towards the median end of the plates into a fossulate pattern, or detached pits; the reticulate sculpturing extends to the peripheral border of the costal plates, which is almost vertically cut down, and is scarcely at all produced where the attached rib projects: there is no marginal pattern along the anterior or posterior borders of the costal plate. The ribs are more neatly defined from the superincumbent costal plates than in any of the foregoing species, except, perhaps, the Tri. rivosus. The Tri. planus differs from them all in the complete obliteration of both the seventh and eighth neural plates, and by a partial obliteration of the sixth neural plate. This arises from a similar eneroachment of ossification from the postero-internal borders of the sixth costal plates, upon the dermal cartilaginous matrix of the sixth neural plate, to that which happens in respeet of the seventh neural and costal plates in the other Trionyces; whilst the whole of the seventh neural plate is superseded, as well as the eighth, and by the same encroachment of the corresponding pairs of costal plates.

These modifications and varieties of the osseous parts of the carapace are very signifieative of the essentially dermal nature of those parts, and show the small value and deceptive tendency of that developmental character on which Cuvier and Rathké have relied in pronouncing the neural plates to be developed spinous processes of vertebræ, and the costal platcs to be expanded ribs. The connation of the seventh and eighth neural plates with the corresponding costal plates does not destroy their essential nature and existence, though it seems to make them part of the costal plates, any more than that connation with the neural arch in other Chelonia which seems to make them spinous processes.

Another distinctive character in the Tri. planus, as compared with the foregoing Eocene species, is the very elose union, almost amounting to confluence, between the seventh and eighth costal plates of the same side, the original suture between which has been almost obliterated at their inferior surface.

In this character the Tri. planus resembles the Tri. ferox, Schweigger (Gymnopus spiniferus, Dum. and Bibr.), and Tri. muticus, Lesueur, but it differs from both by the flatness of its carapace, and the absence of any keel-like elevations upon its outer surface.

The middle of the posterior border of the carapace is slightly concave.
The specimen here described and figured was obtained by the Marehioness of

Hastings from the Eocene sand of Hordwell Cliff, and forms part of her ladyship's rich and instructive collection.

With the above portions of carapace, and apparently belonging to the same species of Trionyx, were found the two osseous plates, naturally and suturally united togcther, which are figured in T. XIXD, fig. 6, hs, ps ; they present a similar coarse reticulate pattern on their external surface, with the same tendency to a concentric arrangement of the raised parts towards the periphery of the plate; their inner surface is smooth, slightly undulating, but upon the whole a little concave, and without any indication of adherent ribs. I regard them therefore as parts of the plastron, and they agree best with the hyosternal and hyposternal elements of the right side; yet differ in having no tooth-like processes extending from the inner border, which is convex instead of being concave, where the two elements join each other.

At the inner and anterior angle of the hyosternal there is, however, the fractured base of what was probably a tooth-like process; and there is similar evidence of such processes having extended from the posterior angle of the hyposternal, close to what I take to have been part of the notch for the xiphisternal.

These fragments at least show that the Tri. planus, or whatever species from Hordwell they belonged to, must have had a very different form of plastron from that of the Tri. incrassatus of the Isle of Wight, of which the conjoined hyosternal and hyposternal bones are figured in T. XVIIA, figs. 3 and 3^{\prime}, and from that plastron of which the hyposternal piece, from Bracklesham, is figured in T. XIXD, fig. 7.

Trionyx circumsulcatus. Owen. Tab. XIX B, figs. 1, 2, and 3.
It may seem to have been hazarding too much to found a species on a single character when manifested by a single fragment of a carapace, which is all that at present represents such species; yet the character in question is so strongly marked, and so different from that of the same part of the carapace of any other fossil or recent species of Trionyx, that there appears to be no other alternative than to regard it as specific. The character in question is the groove or canal which is excavated in the thick vertical margin of the expanded free extremity of the fourth costal plate of the left side, figured in T. XIXB, figs. 1, 2, and 3. The vermicular sculpturing of the external surface of this plate, and its proportions and comexions with the connate rib, prove it to belong to the carapace of a Trionyx.

Previously to receiving this specinen from Lady Hastings, my attention had been drawn to the different modes in which the extremities of the costal plates of the different species of Trionyx were modified, in order to form the border of the carapace; somctimes obliquely bevelled down to an edge, as in the Tri. Barbare and the fragment of the Trionyx pustulatus, from Sheppy, figured in T. XIXB, 7-10; some-
times cut down vertically, or nearly so, as in the thickened border of Tri. incrassatus; sometimes with a marginal modification of the external sculpturing before the edge was formed, as in Tri. marginatus; somctimes without any such border-pattern, as in Tri. rivosus. But whatever character the border of a carapace has presented, has been constant in the same species, in which it is modificd only at the fore part of the border formed by the nuchal plate, and at the back part formed by the short and small eighth pair of costal plates.

From this, therefore, it is to be inferred that the peculiar modification presented by the free border of the fourth costal plate, T. XIX B, fig. 3, was repeated in all the other costal plates, excepting, perhaps, the last pair ; and consequently that the carapace was almost entirely surrounded by a thick, vertical border, deeply grooved,-a character which is expressed by the specific name circumsulcatus, selceted to denote the Eocene Trionyx, represented by the fragment of the carapace here described.

This fragment, which consists as before said of the fourth costal plate of the left side, presents the common reticulate pattern of its external sculptured surface, but with some modifications not presented by the before-described species; the meshes are smaller near the cnds of the plate than at its middle part, and the network is finest near the peripheral end. In the Tri marginatus more particularly, and in a minor degree in Tri. incrassatus, the Tri. Henrici, and Tri. Barbara, we observe the raiscd parts of the network assuming a linear arrangement, more or less concentric, with the circumference of the carapace; but there is nothing of the kind observable in the Tri. circumsulcatus. In this species also the outer surface of the costal plate presents a distinct though slight double curvature; the usual convexity being changed into a concarity near the peripheral border : and, as the inner surface presents the usual uniform concavity, the peripheral part of the plate suddenly augments in thickness as it approaches the grooved border. (See fig. 2.) The character which distinguishes the Tri. incrassatus from Tri. Hewrici, Tri. Barbara, and Tri. rioosus, is exaggerated in Tri. circumsulcatus, and there is added to it the groove, of which there is no trace in Tri. incrassatus, and but a feeble one in the fifth and sixth plates of Tri marginatus.

The connate rib is almost wholly sunk into the substance of the supcrincumbent costal plate in the Tri. circunsulcatus; it is less prominent than in any of the foregoing species, especially at its distal part, which is also less expanded than in the Tri. incrassatus. The free extremity of the rib is entire, and is very short, as is shown in fiqure 1.

Trionyx pustulatus. Tab. XIX 1 , figs. 7, 8, 9.
The contrast which the fragment above rcferred to, of apparently the homologous costal plate to the one last described, presents in the character of its peripheral
border, and in the prominence of the connate extremity of the rib on its under surface, is so great, as must impress the value of sueh characters upon the palæontologist. The outer surface of the present fragment presents a well-marked reticulate, or rather pustular, pattern, but a coarser one than in the Tri. circamsulcatus. The retieulation is eontinued to the beginning of the bevclled border in fig. 7, which slopes gradually to an cdge; beneath whieh the free end of the rib projeets. The Tri. rivosus most resembles the present fragment in this eharaeter.

The fragment is from Sheppy. I strongly suspect it to belong to a species distinct from any of those from Hordwell; and, in the hope of acquiring more illustrative specimens, the attention of collectors is directed to it by the specifie name and the figure here given.

Trionyx. Sp. ind. Brachlesham.
The left hyposternal bone of the Trionyx from Bracklesham (figured in Tab. XIX D, fig. 7) resembles that from the Hordwell Eoeene, referred to Trionys planns (fig. 6, ps), in the eonvexity of the inner border at that part where it is eoncave in the Tri. ïncrassatus (T. XIX, fig. 3, ps) ; but it differs from the Tri.planns in being uniformly convex as far as the xiphistcrnal noteh, and is not indented before forming that notch, as it is in the Tri. planus (T. XIX D). The present hyposternal shows also very plainly the base of a fractured tooth-like proeess of the subjacent hæmapophysis projecting from the inner border, where there is no such trace of a process in the Tri. planus. There are also the bases of a tooth-like proeess on both sides of the xiphisternal noteh, and at the posterior outer angle of the hyposternal bone. The external border of the bonc in advanee of these processes is longer and straighter than in the corrcsponding part of the hyposternal of the Tri. incrassatus.

The species of Trionyx from Braeklesham cannot, however, be safely defined until the characters of its carapace are known. The present speeimen forms part of the valuablc and instructive collection of Frederick Dixon, Esq., F.G.S.

Family-Paludinosa.

This family, if regard were had to the number of speeies it contains, might be deemed the typical one of the order Chelonia. But in the series of extinet speeies, from the particular formation of Great Britain, to which the present Monograph is restricted, the number of marsh tortoises is small in comparison with those that were more truly aquatie (Flavialia), and which inhabited the sea (Marina); and such a result might have been anticipated from the nature of their matrix, as it is elueidated by other elasses of fossil animals, the remains of which are found in the London elay.

The feet of the Paludinosa have the digits eomparatively frce; more than threc
toes, as in Tetronyx, Lesson, and usually all five, are armed with claws, and are united together by a web only at their basc ; but the extent of this web and the length and flexibility of the digits vary in the different species and sub-genera, and accordingly they manifest various degrees of aptitudc for swimming, or for climbing the banks of the streams or marshes which they habitually frequent, and for walking on dry land.

The costal plates extend, in the mature individuals, to the ends of the ribs, and articulate with the marginal plates; the dermal pieccs of the plastron are coextensive with the abdominal integument, and unite together by suture so as to form an unbroken expanse of bone; the sides of which, formed by part of the hyosternals and hyposternals, unite with a corresponding proportion of the latcral borders of the carapace. There is a gradation in the degree of convexity of the carapace, and in the angle at which the sides of the plastron bend up to join the carapace, which progressively brings the marsh tortoises nearer to the true land tortoises (Terrestria), and some of the steps in this progression of affinities are illustrated by the fossils from the London clay.

Those that, by the flatness of their carapace and plastron, depart least from the fluviatile forms of the order will be first described.

Genus-Platemys.

Platemys Bullockir. Owen. Tab. XXI.
 Report on British Fossil Reptiles, Trans. British Association, 1841, p. 164.

Amongst the fossil Chelonians of the London clay, the portable dwelling-house of which was provided with side walls as well as a floor and roof, are some tolerably large species, remarkable for the lowness of the roof of their abode, and especially for the flatness of its floor.

A rigid comparison of the numerous species of the marsh-dwelling Chelonians, which the active rescarches of naturalists have brought within the domain of science, has led to their classification into sevcral groups, to which generic or sub-generic names are attached, and the fine preservation of the characteristic part of the skeleton of the specimen from Sheppy, figured in Tab. XXI, gives the opportunity for determining to which of these subdivisions of the genus Emys of Bronguiart that specimen belongs.

In my 'Report on British Fossil Reptiles,' the result of these comparisons, as regards the present fossil, were simply indicated by the sub-generic name, and I confined myself to a description of the specific distinctions noticeable in the only example I had then seen.

The present species differs from all those to which MM. Dumeril and Bibron
restrict the term Emys,* by the presence of a thirteenth seute-the intergular one (ig. T. XXI) upon the plastron ; from the genera Cistudo and Kinostemon it differs by the absence of any moveable joint between the parts of the plastron; from the Tetronyx by the rounded anterior border of the plastron, and the greater number of seutes that have left their impressions upon it: it resembles the genus Platysternon in the flatness of the plastron and the horizontality of its lateral prolongations; but it differs from the only known species of that genus in the contour of the sternum, whieh is elliptieal and rounded in front, and has the lateral prolongations one third the length of the entire sternum. It has also the intergular seute, whieh is absent in the Platysternon, as in the Emydes of Dumeril and Bibron. The presence of this seute, so plainly indieated at ig in the petrified plastron from Sheppy, together with the impressions of six pairs of the more eonstant seutes of the plastron, indieate that the depressed form of the probably estuary terrapene to whieh that plastron belonged, has appertained to the seetion whieh the eminent French Erpetologists above eited have ealled Pleurodères, or those that eould retraet their neek beneath the side only of the anterior aperture of their thoracie abdominal ease.

From the genus Peltocephictus the fossil under eomparison differs by the marginal position of both gular (gu) and intergular (ig) scutes, and by the slight narrow emargination of its posterior extremity (as). An outline of the natural size of this emargination is added in the plate.

It more nearly resembles the Porlocnemys expansa in the forms and proportions of the plastron seutes; but the three anterior ones ($g u, g u$, and $i g$), are not wedged in (enclavées) between the humeral seutes (hut), but are on a plane anterior to them.

The form and proportions of the plastron in certain speeies of the Platemys, Dumeril and Bibron, and the number and relative position of the seutes which eovered it, offer the nearest resemblance to those of the present fossil, and, with the results of the foregoing eomparisons, have determined my reference of the speeimen in question to that genus.

Like the Platemys Spixii (Emys depressa of Spix), Platemys radiolata, Platemys yibba, and some others of the genus, the sternum is rounded at its anterior border, and notehed at its posterior and narrower extremity.

The intergular seute (ig) whieh erosses the median suture of the episternals (es) is sub-pentangular and larger than either of the gular pair; its point eneroaehes a little upon the entosternal bone (s). The gular seutes (git) are triangular, and, with the intergular one, eover the anterior border of the plastron.

The humeral or braehial sentes (hu) are inequilateral quadrate plates; the pectoral scutes ($p e$) and the abdominal scutes $(a b)$ are transversely oblong and quadrate. The femoral seutes are inequilaterally quadrate, the posterior cxternal angles being prolonged and rounded off. The anal seutes would be sub-rhomboidal were the posterior

[^16]end of the plastron entire. There are impressions of three scutes-the axillary, the inguinal, and a supplementary one,-upon each lateral prolongation of the plastron, covering the suture between this and the marginal plates of the carapace (aa), in which the present fossil resembles the Platysternon or large-headed Emys of China; but the lateral walls are relatively longer, being equal in antero-posterior extent to one third the same diameter of the entire plastron; whilst in the subgenus Platysternon they are less than one fourth. The general form of the plastron is also very different; in the Platysternon megacephalum, e. g. the plastron has an oblong quadrilateral figure, with an open-angled notch behind.

Retaining, then, the present species in the genus Platemys, as defined by Duméril and Bibron, we find that it cnters into that small minority of the group in which the plastron is rounded instead of being truncate anteriorly.

In the present remarkable fossil the plastron forms almost a long ellipse, the hinder, division being very little narrower, but tending to an apex, which is cut off by a shallow emargination. The lateral walls, of the length above defined, cxtend outwards almost parallel with the plane of the sternum, and expand to join by a wavy or rather zigzag suture the marginal plates; six of these ($\begin{gathered}\text { a } a \quad a \quad a \quad \text { a) } \text {) are preserved on each }\end{gathered}$ side; their lower sides form a very open angle with the lateral walls: but the fractures of these parts indicate that their horizontality may be in part due to accidental pressure.

The anterior part of the entosternal (s) is bounded by two nearly straight lines, converging forwards at an angle of 65°, with the apex rounded off; the posterior contour of this bone is nearly semicircular. The length of the entosternal is two inches ten lines; its breadth three inches seven lines; the forms and relative positions of the other elements of the plastron are sufficiently illustrated by Tab. XXI : es, es marks the extent of thc left episternal; lis, hs are the hyosternals; ps the hyposternals; as the xiphisternals.

The chief peculiarity of this plastron is the intercalation of a supernumerary piece of bone, bearing the letters pe and ab between the hyosternal and hyposternal elements on each side; so that the middle third of the plastron is crossed by two transverse sutures instead of one; each suture being similarly interrupted in the middle by an angular defiection from the right, half an inch back, to the left side.

The extremities of the transverse sutures terminate each at the apex formed by the inner or lower border of the parallel marginal plates. The first or anterior of these sutures is distant from the anterior margin of the plastron six inches five lines; the second suture is distant from the same margin eight inches nine lines; the right half of the suture, which is a few lines in advance of the left, is the part from which these measurements are taken.

Since this deviation is rare, it having been noticed for the first time in the original description of the present specimen, a naturalist, not having the specimen at hand for
comparison, might at first be led to suspeet that the transverse impressions of the second (peetoral) or third (abdominal) pairs of seutes had here been mistaken for a suture; but due eare was observed to avoid this error; the seutes of the plastron have left obvious impressions at $p e, f e$, whieh prove that they were in the same number as in the Platemydians generally, and were quite distinet from the sutures in question.

Thus the intergular seute (ig) is in the form of an aneient shield; the gular scutes ($g u$) are small inequilateral triangles, with their posterior border parallel with that of the suceeeding pair of seutes. The posterior transverse boundary of these,-the humeral seutes (hu)—erosses the plastron four inehes and a half from its anterior margin ; that of the peetoral pair of seutes erosses at seven inches and a half from the anterior border, and between the two transverse sutures; that of the abdominal pair $(a b)$ at ten inehes distant from the anterior margin, and about one inch and a quarter behind the seeond transverse suture; passing straight aeross the plastron between the posterior eoneave margins of the lateral wall. The posterior boundary of the fifth or femoral pair of seutes ($f e$) inelines obliquely baekwards from the median line, as usual ; it is three inehes behind the preceding transverse impression.

It is in the interspace of these impressions that traees of the transverse suture between the hyposternals and xiphisternals are obvious, about four inehes from the posterior extremity of the plastron. If these traees were not so obvious, it might be supposed that the xiphisternals were of unusual length, entering into the formation of the lateral wall, and extending baekwards from the seeond transverse suture to the end of the plastron; but this disproportion would be hardly less anomalous than the existence of the additional pair of bones interealated between the hyo- and hyposternals whieh the present fossil evidently displays.

In most of the existing large Emydes and Platemydes, the median transverse suture traverses the plastron a little behind the third pair of scutes, and so erosses the fourth or abdominal pair $(a b, a b)$; and aecording to this analogy, the second transverse suture in the fossil agrees with the single one ordinarily present, and has most right to be regarded as the normal boundary between the hyo- and hyposternals. One of the most distinetive charaeters of the present extinet Platemys is, therefore, the division of eaeh hyosternal into two, the plastron eonsisting of eleven instead of nine pieces; if the very interesting anomaly whieh it displays be not an aeeidental or individual variety. Viewed in the latter light, its explanation is suggested by that homology of the hyosternals and hyposternals which determines them to be eonnate and expanded abdominal ribs (hæmapophyses), and thus we may view the oldest of the known Platemydians as exhibiting, like many other extinet forms, a nearer approaeh to the more typieal eondition of the abdominal ribs, as they are shown, e. g. in the Plesiosaurus. Whereas, on Geoffroy's hypothesis, that the plastron is the homologue of the sternum of the bird, it would be a further deviation from that type.

The fine cxample of Platemys Bullockii, here described and figured, was purchased for the British Museum at the salc of Mr. Bullock's collection.

I am happy in the opportunity of expressing my acknowledgments to Charles König, K.H., F.R.S., for the urbanity with which every requisite facility was afforded.

Platemys Bowerbankif. Owen. Tab. XXIII.
Report on British Fossil Reptiles, Trans. British Association, 1841, p. 163.

This specics is represented by a fine specimen exhibiting not only the plastron (fig. 2), but likewise a great portion of the carapacc (fig. I), from Sheppy, in the rich collection of the fossil remains from that island in the possession of J. S. Bowerbank, Esq., F.R.S. It equals in size the Platemys Bullockii, in the British Museum, but differs in the absence of the finely punctate character of the exterior surface of the boncs; in the greater antero-posterior extent of the lateral walls, and the longer curves which they form in extending from the body of the plastron.

The carapace (fig.]) presents the same equality of breadth of the ncural plates ($82-s_{7}$) as in the Emys testudiniformis; but they diminish more rapidly in length as they recede in position; and the whole carapace is much more depressed; it is flat along its middle tract. The sixth neural plate (s6) is a hexagon of nearly equal sides ; the seventh $\left(s_{7}\right)$ is a pentagon; the mesial or vertebral ends of the seventh pair of costal plates ($p / 7$) meet and unite behind it, so as to conccal or supersede the cighth ncural plate. In the circumstance of the neural plates decreasing in length without losing breadth, as well as in the mutual junction of the seventh costal plates, the present fossil rescmbles the Sheppy carapace from Mr. Crow's collection, which Cuvicr has figured, and which may, therefore, have belonged to the present species of Platemys.

The plastron (fig. 2) is thirteen inches in length and ten inches in breadth; it is rather broader before than behind, rounded at the anterior border, with a shallow emargination at the middle of the posterior border, but wider than in the Platemys Bullockii, and with the angles on each side rounded off. The under surface is nearly flat, slightly convex at the fore part, and as slightly concave behind. The lateral walls uniting the plastron to the carapace are five inches in antero-posterior cxtent.

The entosternal (s) rescmbles that of the Platemys Bullockiii in general form, but is longer than it is broad, instcad of the reverse proportions. The two anterior sides meet at a right angle. The episternals (es) are broadcst bchind. The middle part of the plastron is almost equally divided between the hyosternals ($h s$) and hyposternals ($p s$). There is a tracc of the intercalary piece (hp), which is seen extending across the plastron of the Platemys Bullockii; here it is wedged into the outcr interspacc of those bones, like onc of the external portions of the composite abdominal ribs in the Plesiosaur. In the relative length of the lateral walls the Platemys depressa most resembles the present species.

Genus-Emys.

Emys testudiniformis. Owen. Tab. XXIV.
Report on British Fossil Reptiles, Trans. British Association, 1841, p. 161.
Emys de Sileppy. Cur. (?)
From the preceding genus of the Chelonia paludinosa the present species differs in the depth of the bony cuirass, the convexity of the carapace, and the coneavity of the plastron (T. XXIV, fig. 6). The more immediate affinitics of the present fossil are elucidated by the comparison of the points of structure which it displays with the anatomical charaeters of the carapaee of the Platemys and Testudo.

The specimen, on which the species here called Emys testudiniformis is founded, ineludes a large proportion of the first, second, third, fourth, fifth, and sixth, with a fragment of the seventh eostal plates of the left side; a small proportion of the seeond, third, fourth, fifth, and sixth neural plates; the hyosternals and hyposternals, and part of the entosternal bones of the plastron.

The first costal plate is one inch ten lines in greatest breadth, one inch five lines broad at its junction with the neural plates, and four fifths of the vertebral margin is articulated with the second neural plate; one fifth part, divided by an angle from the prcceding, joins a corresponding side of the lateral angle of the third neural plate; in this structure it resembles both the genus l'estudo and some species of Emys.

The third, fourth, fifth, and sixth neural plates are of equal broadth, as in Emydes; not alternately broad and narrow as in the Testuctines; they are likewise of uniform figure, as in most Emydes; not variable, as in Testudines; the neural plates also resemble those of the existing Emydes, and partieularly of the Box-terrapin (Cistudo) in form. The lateral margin of each is bounded by two lines, meeting at an open angle, the anterior line is only one fourth part the length of the posterior one; and this resemblance may be stated with confidence, since the portion of the entosternal piece preserved in the plastron determines the anterior part of the fossil.

The costal plates preserved in the present Chelonite differ from the eorresponding ones of the tortoises, and resemble those of the Emydes in their regular breadth, and the uniform figure of the extremities articulated with the vertebral pieces; the anterior line of the angular extremity is nearly three times as long as the posterior one.

Further evidence of the relation of the present Chelonite to the fresl-water family is given by the impressions of the epidermal scutes; those eovering the vertebral plates (scuta vertebralia) agree with those of most Emydians in the very slight production of the angle at the middle of their lateral margins, which is bounded by a line running parallel with the axis of the earapace, except where it bends out to form that small angle.

The middle part of each side of the plastron, in the Emys testudiniformis, is joined to the carapace by a strong and uninterrupted bony wall, continued from a large proportion of the hyosternal and hyposternal bones upwards to the marginal costal pieces. The median margin of the hyosternals and hyposternals are articulated together by a linear suture, traversing the median line of the plastron, and only broken by a slight angle formed by the right hyposternal, which is a little larger than the left. A similar incquality is not unusual in both tortoises (Testudinida) and tcrrapenes (Emydida). The transverse suture is, of course, broken by the samc inequality; that portion which runs between the left hyosternals and hyposternals being two or tlrec lines in advance of the one between the right hyosternals and hyposternals. The postcrior half of the broad entosternal picce is articulated to a semicircular cmargination at the middle of the hyosternals; so that the whole plastron forms one continuous plate of bone. This is relatively thicker than in existing Emydes, resembling in its strength that of tortoises ; and it is likewise slightly concave in the middle, which structure is more common in tortoises than in Emydians, save those in which the sternum is moveable; in most of the other species the sternum is flat or slightly convex.

I have shown in my paper on the Turtles of Sheppy,* that the carapace figured by Cuvier \dagger was not sufficiently perfect to decide the affinities of the Chelonian to which it belonged; if the vertebral scutes were less broad and angular than in marine turtles, the neural plates-much less variable in their proportions-were, on the other hand, as narrow as in turtles. But with reference to the plastron of the Sheppy Chelonite, figured by Parkinson, * and supposed by Cuvier to belong to an Emys of the samc species as the carapace above alludcd to, I have been able to detcrmine, by an examination of the original specimen in the museum of Professor Bell, that it belonged to the marine genus Chelone and to the species longiceps. In the fossil Emys in Mr. Bowerbank's collection, the plastron being in great part prescrved, cstablishes its nonconformity with the marine turtles, and manifcsts a striking difference from Parkinson's fossil plastron.

The cntosternal piece is impressed, as in Tortoises and Emydes, by the median longitudinal furrow, dividing the two humeral scutes; the transverse linear impression dividing the humeral from the pectoral scutes traverses the hyosternals half an inch behind the suture of the entosternal ; the second transverse line, which divides the pectoral from the abdominal scutes, is not so near the first as in tortoises, but bears the same relation to the transverse suture of the plastron as in most Emydes; it does not pass straight across the plastron, but the right half inclincs obliqucly inward to a more posterior part of the median suture than is touched by the left half. The third transverse line, which divides the abdominal from the femoral scutcs, passes straight

[^17]across the plastron between the posterior ends of the bony lateral walls, uniting the carapace and plastron.

			Inches.	Lincs.
The breadth of the plastron is	- .		5	10
The outer posterior extent of the lateral wall	- -		3	9
The breadth of the entosternum	- .		1	5
The depth of the whole bony cuirass at the m	line is		4	0

In the convcxity of the carapace and relative depth of the osscous box, the Sheppy Chelonite slightly surpasses most existing species, rescmbling in this respect the Emys ocellata and Cistudo Carolina. The plastron is also slightly concave, as in the male of Cistudo vulgaris: it is, however, entire at the line where the transverse joint of the plastron exists in the box-tortoises; and the extent and firm ossification of the lateral supporting walls of the carapace forbid likewise a reference of the fossil to those genera.

The general characters of the present fossil, more especially the uniformity of size and breadth of the preserved vertebral plates and ribs, prove it to be essentially related to the fresh-water or Emydian Tortoises. It exceeded in size, however, almost all known Emydians, and was almost double the dimensions of the Emydian species (Cistudo Europea) now inhabiting central Europe. It appears, like the Cistudines, to have approached the form of the land tortoises, in the convexity of the carapace, but without possessing that division and hinge of the plastron which peculiarly distinguishes the box-tortoises. The contraction of the anterior aperture of the bony cuirass, especially transversely as compared with the Platemydians, would indicate more restricted powers of swimming, and consequently more terrestrial habits. In the thickness and strength of the bones of the buckler, especially of the sternum, we may discern an approach to the genus Testudo.

Assuming that the Chelonite here deseribed may be identical with that of which the carapace from Mr. Crow's collection is figured in the 'Ossemens Fossiles,'* the "Emys de Sheppy" of Cuvier will be one of the "synonyms" of the present species. Mr. Gray, in his 'Synopsis Reptilium,' 8vo, 1831, has given Latin names to all the fossil reptiles indicated or established by Cuvier, and has called the "Emys de Sheppy" "Emys Parkinsonii," referring as representations of this specics, not to the figure of the carapace above cited, which may belong to the same species as the present Eumys, but to the figure of the plastron, copied by Cuvier from Parkinson's 'Organie Remains,' and to the figure of the skull in the same work, both of which most unquestionably belong to the genus Chelone and not to the genus Emys.

The "Emys Parkinsonii" of Mr. Gray is a synonym of my Cliclone longiceps. Cuvier's name,-which, besides the claim of priority, is the result of laborious and direct comparison devoted to the elucidation of its subject,-if rendered into Latin would be Emys toliapicus; but as the species to which it refers may not be the one

[^18]here deseribed, and is by no means the only fresh-water tortoise which the elay of Sheppy has yielded; and sinec the charaeters of the present species have not hitherto been defined nor its affinities to the land tortoises been pointed out, the interests of seienee appeared to me to be best consulted by giving a distinet name to the present speeies.

The fossil here deseribed is from the Eoeene clay of Sheppy Island, and forms part of the eolleetion of J. S. Bowerbank, Esq., F.R.S.

Emys levis. Bell. Tab. XXII.
The only specimen I have seen of this species, I obtained from Sheppy a few montlis sinee, and it is now in my collection. It has some remarkable peeuliarities whiel distinguish it, at first sight, from every other speeies of Emydian, either recent or fossil.

The speeimen is imperfeet at eaeh extremity ; the earapaee wanting anteriorly the nuchal plate, and posteriorly from the cighth neural plate inelusive. The contour of the carapaec is remarkably even, free from all inequalities of surface, and forming, from side to side, nearly a perfeet segment of a cirele, uninterrupted by either carina or depression of any kind. The whole surface of the bone also is remarkably smooth.

The first neural plate (fig. 1,81) is narrow, being not more than two fifths as broad as it is long; the sides parallel for the first two thirds of its length, then slightly narrowed; its sides are not interrupted by the costal sutures, as the posterior margin of the first costal plate ($p l_{1}$) joins the antcrior part of the seeond neural. The sceond, third, and fourth neural plates ($82-s 4$) are of an elongated hexagonal form, and nearly resemble eaeh other ; the fifth, sixth, and seventh (8.5 - $s 7$) are also hexagonal, but caeh shorter than the preeeding one; the sixth is narrowed somewhat abruptly, and the seventh still more so, the latter being also shorter than it is broad.

Although the posterior part of the carapace is considerably broken, there appears evidently to be an interval between the seventh and eighth neural plates; at whieh part the posterior portion of the seventh costal plate and the anterior portion of the eighth approximate to the corresponding plates of the opposite side, on the median line, without the intervention of the neural plates; a peculiarity whieh I do not remember to have seen in any other of the Emydida.

The first eostal plate occupies in its breadth the whole length of the first neural, and the anterior fifth only of the second ; but in consequence of the gradual shortening of the ncural plates in the portion of each, posterior to the angle at which the costal sutures join them, the seventh neural receives the eostal suture at about the middle of its length.

The marginal plates (fig. 3, a, a, a) are broad, smooth, and curved evenly to the edge, where they turn under at nearly a right angle.

The second and third vertebral seutes $(v 2,3)$ are twiee as broad as they are long, the outer angles being nearly right angles; and this must be, to a great extent, a permanent eharaeter, as the speeimen is evidently not young. The fourth vertebral seute (v_{4}) is hexagonal, and its breadth is about one fourth greater than its length.

Of the plastron (fig. 2), the whole of the anterior portion is wanting, ineluding the entosternal, the episternals, and a portion of the hyosternals; and the posterior portion has lost the greater part of the xiphisternals. The bones whieh remain form a broad, somewhat eonvex, uniform surfaee.

The most remarkable eireumstanee eonneeted with this part of the osseous box is the existenee of a pair of interealated, irregularly-formed bones (h_{μ}), whieh stand between the marginal portion of the hyosternal ($h s$) and hyposternal bones. These would appear to represent the pair of additional bones whieh will be seen in Platemys Bullockii (Tab. XXI), stretehing aeross between the hyosternals and hyposternals, and, in the latter ease, meeting like them in the median line.

I have examined many skeletons of Emydes, but have never observed any similar structure in this genus; but in the genus Terrapene, ineluding the ordinary boxtortoises, there appears to be, in some eases, a rudiment of a eorresponding bone.*

The total length of the earapaee of this specimen, judging from eomparison with perfeet reeent examples of the same genus, was probably rather more than eight inches, and its breadth is six inches.

T. B.

Emys Comptoni. Bell. Tab. XX.
The beautiful speeimen of fresh-water Chelonia whieh forms the subjeet of the present deseription, is in the eollection of the Marquis of Northampton, who has kindly allowed me the use of it, and to whose respeeted name I have dedieated it.

The general form of this speeies, as well as many details of its strueture, is so similar to that of a typieal land tortoise, that it is diffieult at first to reeoneile its aspeet with the idea of its being at all aquatie in its affinities. It is, lowever, doubtless a true Emys; and although the present speeimen is a young one, its eharaeters are suffieiently marked to enable us to distinguish it from every other. The eostal plates

[^19]had not become ossified to the extremity of the ribs, and there is consequently a space between the costal and marginal plates, interrupted by the frce extremities of the ribs, which just reach to the marginal plates. It is the only specimen of the family which I have scen, amongst the fossil Chelonian remains, in which the whole series of neural plates, with the nuchal and pygal, remain without material injury; and the plastron is also nearly entire.

The nuchal plate (fig. l, ch) would form a triangle with its posterior angle obtuse, but that this angle is truncated for its articulation with the first neural (81). This latter plate is quadratc, a little longer than broad, and rather narrowed forwards. The sccond (82) and third (83) are also quadrate, and ncarly equilateral, The fourth ($s 4$) is, however, rendered hexagonal by the termination of the costal suture at a short distance from the anterior margin; it is quite as broad as it is long. The fifth neural plate ($s 5$) is of a similar form, but notably longer than it is broad, forming a broad hexagon, with the lateral angles nearer the anterior than the posterior margins. The seventh (87) is the only one which forms a nearly symmetrical hexagon, broadcr than it is long, but with the lateral angles equidistant from the anterior to the posterior margins. The eighth and ninth neural plates $(s 8,9)$ are regularly quadrate, the former being broader than it is long, the latter forming a perfect square. It is very remarkable how much morc closely the seventh and following neural plates to the tenth are united than any of the anterior ones; indeed the sutures between the seventh and eightli, and between the eighth and ninth, are with difficulty observable, notwithstanding the youth of the individual. The tenth neural (810) and the pygal (p) plates are somewhat injured and bent down abruptly by some violence.

I have dwelt somewhat in detail upon the direction of these plates, as their characters evidently bear upon the near relation of this species to the terrestrial type already alluded to.

The internal margin of the first costal plate ($p l_{1}$) exactly coincides with the length of the first ncural. The second and fourth costal plates ($p l_{2}, 4$) cxpand towards the margin of the carapace, and the third and fifth $(p l 3,5)$ become narrower in the same direction in a similar degree.

The marginal plates present no important peculiarity in this young specimen.
With regard to the impressions left by the horny scutes, we find that although they are of the ordinary gencral form, they are less broad and sprcading in proportion to their length, than is ordinarily the case in the Emydida, and particularly in immature age; thus offering another character approaching the terrestrial type.

The plastron (fig. 2) is tolerably perfect, and presents the remarkable cxpanse which ordinarily characterises the land and fresh-water forms, but especially the former ; and the anterior and posterior openings between the carapacc and the plastron, for the exit and play of the extremities, are somewhat contracted, and thus appear scarcely to afford sufficient room for the natatorial habits of an aquatic spccies.

The entosternal plate (s) forms an almost regular rhomb; the episternals (es) are mueh broken, and offer no peculiarity in the parts whieh remain; nor is there, in the general form of the hyosternals (hs) or hyposternals ($p s$), or the xiphisternals ($x s$), anything which ealls for partieular notice.

The eontour of the bony ease, viewed as a whole, bears out the close relation to the terrestrial form whieh I have assigned to this speeies. The slightly curved eostal regions of the earapaee, and the even flatness of the vertcbral portion, as well as the outline of the dorsum, when viewed laterally, show a very striking approximation to the small Afriean speeies of true Testudo, T. areolata, and still more to T' signata. But if its geologieal position did not of itself preclude our considering it as belonging to a terrestrial group, the strueture of many parts of its osteology would bc suffieient to justify our eonsidcring it as a true Emydian.

T. B.

Emys bicarinata. Bell. Tab. XXV and XXVI.

The speeimen bcfore me, the only one whieh I have yet met with of this speeies, is very large, and, from the elose union of the bones, and the nearly obliterated condition of the sutures, is evidently of considerable age; a faet also attested by the forms of the vertebral seutes ($v_{2}, v 3, v_{4}, \mathrm{~T} . \mathrm{XXV}$), which have beeome greatly narrowed in proportion to their length.

The general outline of the earapaee must have been nearly orbicular. The elevation moderate; the part oeeupied by the vertebral seutes, and about half an inch on each side of them, flattened; and this plain portion bounded on eaeh side by a low obtusc earina, which is itself obscurely and irregularly grooved longitudinally. The sides arc considerably sloping, with but a slight curvature.

The carapace is wanting anteriorly in nearly the whole of the muehal plate, and posteriorly from the tenth neural inelusive. At the sides a few fragments only of the marginal plates exist.

The first ncural phate ($s 1$) is nearly oval, and, as usual in this family, is wholly ineluded within the first pair of eostal plates; it is eonsiderably longer than any of the suecceding oncs. The sceond neural (82) is nearly as broad as it is long, the anterior angles truneated as usual, posteriorly somewhat narrowed; the third neural (83) has the peculiarity of being longer than even the second, and is less narrowed behind; the fourth to the seventh inclusive ($s 4-\bar{z}$) are gradually shorter, the seventh forming a broad hexagon, with the latcral angles (mecting the costal suture) nearly midway between the anterior and postcrior margins. The eighth ($s 8$) is also broader than it is
long, but the lateral angle is near the anterior margin, as in the preeeding plates. The ninth ($(89$) is somewhat expanded posteriorly, but less so than usual.

The sixth and seventh of the neural plates are eonsiderably raised towards the centre, but with a slight longitudinal depression along the median line; and there is a considerable triangular or wedge-shaped elevation, commeneing with its base near the anterior margin of the eighth, and extending to the posterior margin of the ninth neural plate.

The eostal plates ($p l_{1}-8$) differ from those of the species in general in being more regularly parallel at their lateral margins.

The first vertebral seute reaehes to the posterior third of the first neural plate (v_{1}), and its lateral margins are expanded forwards, but with a slight eurve. The second and third $(v 2,3)$ have nearly parallel sides, and are both longer than they are broad, the lateral angles being extremely inconsiderable; the fourth (v_{4}) is hexagonal, but still with short lateral angles; the fifth (v_{5}) has the lateral margins, and, as usual, becomes broader posteriorly.

As the eostal or lateral seutes depend, in the only important and variable part of their contour, on the form of the margins of the vertebral, it is unnecessary to describe them.

The plastron (T. XXVI) occupies about its usual relative proportion to the carapace, but it has been so much broken as to afford but little opportunity for any satisfactory or useful deseription. It would appear, however, from the extent of the openings for the passage of the limbs, that the animal must have possessed considerable powers of swimming, offering in this respeet a very marked eontrast to the testudiniform eharacter of E. Comptoni and E. testudiniformis.

Emys Delabechif. Bell. Tab. XXVIII.

An almost gigantic speeimen of the fluviatile form of seutate Chelonia, in the collection of the Geologieal Survey, forms the subjeet of the present deseription. It is from the London elay of the Island of Sheppy.

This speeies far surpasses in size any known Emydian, whether fossil or recent; the earapace having been eertainly not less than one foot nine inches in length and one foot five inehes in breadth. It very elearly belongs to the form to whieh I have assigned it, and in some of its broader eharacters approximates eonsiderably to the last species, E. bicarinata. The specimen is, however, unfortunately so badly injured, partly by having been originally mueh erushed, and partly by reeent disintegration,
from the decomposition of the pyrites with which it is extensively permeated, that the deseription must necessarily be confined to little more than general eontour.

The osseous case is somewhat less deep, in proportion to its probable length and breadth, than in E. bicarinata, as will be seen by a comparison of their dimensions; it is eonsequently less sloped at the sides, which are also less curved. There is not the slightest indieation of a earina, either median or lateral; but the whole vertebral region is simply flattened.

I have already had oecasion to observe, that as the seutate Chelonians eontinue to grow, the vertebral scutes are observed to alter their form, and the relative proportion of their longitudinal and transverse diameters. This takes plaee particularly by the comparative abbreviation of the angular lateral projections whieh meet the line of junction of the margins of the eorresponding eostal seutes. These angles, as the animal grows, and as the scutes inerease in size, beeome eomparatively mueh shorter and more obtuse; and to such an extent does this take plaee, that in many speeics the sides of the vertebral seutes become very nearly parallel in old age; as may be observed in the figure of E. bicarinata (T. XXV), and in most reeent speeies.

Now the speeimen at present under notiee, notwithstanding its great size, exhibits this indieation of old age, even in a less degree than in the figured speeimen of E. bicarinata. We eould not, thercfore, even if other distinetive charaeters were absent, for a moment eonfound them as onc speeics.

In longitudinal dimensions the seutes in question ordinarily inerease in proportion to the growth of the animal ; and afford, in the examination of mutilated fossil Chelonian remains, approximating data for asecrtaining the general size of the animal; the seeond and third vertebral seutes, taken togcther, being generally rather less than two fifths of the total length of the earapace.

The edge of the present specimen, and the imjuries it has undergone, eombine to render any satisfactory aeeount of the vertebral series of osseous plates impossible; the nuehal and pygal plates being absent, and the neural wholly indistinguishable ; and the plastron has been even more mutilated than the carapace.

The impressions of the vertebral seutes are tolerably perfect, as far as regards the second $(v 2)$, third $(v 3)$, and fourth $\left(v_{4}\right)$. The second and third are about as broad as they are long, irregularly hexagonal, and the lateral angles are but moderately produced; the third has the posterior margin shorter than the anterior ; the fourth is rather longer than it is broad, and notably narrowed postcriorly.

The plastron exhibits at least the usual expanse of form which belongs to the typical Emydes, but its condition is such as to preclude any detailed deseription.

Sueh are the meagre details to whieh we are restrieted in deseribing by far the largest of all the fossil speeies of this genus. I have the gratifieation of offering it by name to my distinguished friend Sir Henry De la Bèehe, through whose kindness I have the opportunity of ineluding it in the present Monograph.
T. B.

FRAGMENTARY REMAINS OF EMYDIANS.

Emys crassus. Tab. XXVII.

From several such speeimens kindly transmitted to me by the Marehioness of Hastings, I have seleeted for the subjects of Tab. XXVII two portions of a plastron; viz. the hyosternal (figs. 1, 1') and the hyposternal (figs. 2, 2'). They are ehiefly remarkable for their thiekness (fig. 3), and also for their size in other dimensions.

The hyosternal shows on its outer surface (fig. l) very strong impressions of the interspace or union between the humeral and peetoral seutes, and between the peetoral and abdominal seutes. The hyposternal shows the same kind of impression between the abdominal and femoral seutes.

These speeimens were discovered in the Eoeene sand at Hordwell, and are in the museum of the Marehioness of Hastings.

In Tab. XXIV, figs. 1-5, are figured some portions of the carapace of an Emys, from the Eocene deposits on the north shore of the Isle of Wight. These also form part of the eollection of the Marehioness of Hastings.

TAB. I.

Skull of Chelone breviceps, nat. size.

Fig.

1. Side view.
2. Top view.
3. Base view.
4. Back vicw.

The following numerals indicatc the same bones in each figure.

1. Basioccipital.
2. Exoccipital.
3. Supraoccipital.
4. Paroccipital.
5. Basisphenoid.
6. Parictal.
7. Mastoid.
8. Frontal.
9. Postfiontal.
10. Prefrontal (with connate Nasal and Lachrymal).
11. Maxillary.
12. Malar.
13. Squamosal.
14. Tympanic.
15. Articular.
16. Surangular.
17. Angular.
18. Dentary.

TAB. II.

Chelone breviceps, four fifths of the natural size.

Fig.

1. Upper view of the carapace.
ch. The nuchal plate.
$\$ 1-s 10$. The neural plates, most of which are eonnate with the neural spines.
$p l_{1}$-pl8. The costal plates, eonnate with the pleurapophyses or vertebral ribs.
$v_{1}-v_{4}$. Impressions of the vertebral seutes.
m_{1}. The first marginal plate.
2. Under view of the plastron and hent-down skull.
es. Episternal element of plastron.
hih. Hyosternals.
ps. Hyposternals.
as. Xiphisternals.
3. Side view of skull.
4. Parietal.
5. Mastoid.
6. Frontal.
7. Postfrontal.
8. Maxillary.
9. Malar.
10. Squamosal.
11. Tympanic.
12. Outline of the transverse seetion of the middle of the thoracic-abdominal case.

TAB. III.

Skull of Chelone longiceps, nat. size.

Fig.

1. Side view.
2. Top view.
3. Basc view.
4. Back view.

The same numerals indicate the same bones as in Tab. I.
13, 13. Vomer.
20. Palatine.
22. Premaxillary.
24. Pterygoid.

The following perishable parts are indicated by the impressions left on the bone:
$f r$. The frontal scute.
$s y$. The sincipital scute.
io. The inter-occipital scute.
oc. The occipital scute.
ol. The occipito-lateral scute.
$p a$. The parietal scute.
ob. The supraorbital scute.
$f n$. The frontonasal scute.

TAB. IV.

Chelone longiceps, nat. size.
Fig.

1. Skull and portion of carapace.
s2. Second neural plate.
s3. Third neural plate.
2. Portion of carapace.
$s 4$ - $s 11$. Fourth to eleventh neural plates.
p75-pl8. Impressions or remains of costal plates.
v_{4}-r. Impressions of fourth and fifth vertebral scutes.

TAB. V

Chelone longiceps.

Fig.

1. Upper view of the carapace, two thirds of the natural size.
ch. Nuchal plates.
s1-s10. Neural plates.
pllpl8. Costal plates.
$v_{1}-v 4$. Vertebral scutes.
2. Under view of the plastron of another specimen, two thirds nat. size.
s. Entosternal.
es. Episternals.
his. Hyosternals.
ps. Hyposternals.
xs. Xiphisternals.
3. The ischium.

2/3 Nal sige.

TAB. VI.

Chelone latiscutata, nat. size.
Fig.
l. Upper surface of the earapaee.
s1. First neural plate.
$p l_{1}$. First eostal plate.
s2. Second do.
$p l 2$. Second do.
s3. Third do.
$p l 3$. Third do.
s4. Fourth do.
$p l_{4}$. Fourth do.
sy. Fifth do.
pl5. Fifth do.
s6. Sixth do. pl6. Sixth do.
v_{2}. The impression of the second vertebral scute.
v_{3}. The impression of the third vertebral seute.
2. Lower surface of the plastron.
s. Extremity of the entosternal.
hs. The hyosternal.
$p s$. The hyposternal.
xs. Impressions of the xiphisternals.
3. Anterior surface of the earapace and plastron, showing the degree of convexity of those parts, and the depth of the osseous ease.
51 is the scapular arch.

TAB VII.

Chelone convexa.

Fig.

1. Upper view of the carapace, nat. size.
2. Under view of the plastron, nat. size.

The letters and figures indicate the same parts as in the previous subjects.
53. The humerus. 64. The pubis. 65. The femur.
3. Under view of the symphysis and part of the rami of the lower jaw.
4. Outline of the curve of the carapace.

TAB. VIII.

Chelone subcristata.

Fig.

1. Upper view of the carapace, three fifths of the natural size.
2. Under view of the plastron of the same specimen.

The letters and figures indicate the same parts as in the preceding subjects.

TAB. VIII A.

Chelone subcarinata.

Fig.

1. Upper view of the carapace, scven twelfths of the natural size.
2. Under view of the plastron of the same specimen.
3. Outline of the transverse contour of the carapace.

TAB. IX.

Skull of Chelone planimentum, nat. size.

Fig.

1. Under view of the lower jaw, showing the characteristic extent and flatness of the symphysis.
2. Upper view of the skull.
3. Side view of the skull.

TAB. X.

Chelone planimentum.

Under or inside view of the carapace, half the natural size.
s.-ss. The fifth to the eighth ncural plates which are anchylosed to the neural spines.
$\$ 9-s 11$. Three succeeding neural plates which do not become so anchylosed.

TAB. X A.

Chelone planimentum.

View of a east of the under or inner surface of the earapace; with portions of the ribs and marginal plates: one third the natural size.
$p / 1$-p/8. Impressions of the eostal plates and ribs.
$m 11, m_{12}$. The eleventh and twelfth marginal plates.

TAB. XI.

Skull of the Chelone crassicostata, two thirds of the nat. size.

Fig.

1. Upper view, showing chiefly a cast of the under surface of the bones. 12. The situation of the postfrontals. 14. The prefrontals. 15. The nasals.
2. Side view.
3. Under riew of the symphysis menti.

TAB. XII.

Chelone crassicostata.

View of the inner surface of the carapace, half the natural size.
ch. The nuchal plate.
$p l$. The first costal plate and adherent rib.
p_{2}. The second ditto.
p_{3}. The third ditto.
$p l_{4}$. The fourth ditto.
pls. The fifth ditto.
pl6. The sixth clitto.
$p 7_{-}$. The seventh ditto.
pls. The eighth ditto. The figures are placed above the free projecting ends of the ribs; they belong to the second and the ninth dorsal vertebræ inclusive.
s9. The ninth neural plate.
*10. The tenth neural plate.
m. The last neural or the "pygal" plate.

These are developed, like the nuchal plate, in the substance of the derm, and do not become confluent with any parts of the endoskeleton.

TAB. XIII.

Chelone crassicostata.

Fig.

1. Portion of the plastron seen from the under side.
hs. The hyosternal ; ps, the hyposternal: $x s$, the xiphisternal. 52 is the coracoid, exposed by the removal of the right hyosternal.
2. Cast in the matrix of a portion of the carapace of the same individual, showing the characteristic thickness of the ribs, $p l, p l$.

TAB. XIII A.

Chelone crassicostata.

Portion of the carapace, half the nat. size, with the corresponding series of marginal plates, $m(m-m 12$, and $p y$.
$p / 3$ and $p l_{4}$, the third and fourth costal plates of the left side ; $p / 5-p / 8$, impressions in the matrix of the succeeding costal plates.

1/2 Nal. Sifor

TAB. XIII B.

Chelone crassicostata, half the nat. size.

Fig.

1. Outside view of the carapaee. $s 7$ - $s 10$, the seventh to the tenth neural plates inclusive: $p 7_{2}-p 7_{8}$, the seeond to the eighth eostal plates of the left side: $p l 3-p l 8$, the third to the eighth, inelusive of the right side.
2. The plastron disloeated and erushed in, with part of the skull showing the orbit o; $h s$, the hyosternal ; ps, the hyposternal ; xs, the xiphisternal ; 51, the scapula; 52, the eoraeoid.

TAB. XIV.

Chelone declivis.

Fig.

1. Upper view of the left moiety of the carapace, nat. size.
ch. Impression of the nuchal plate.
s1. First neural plate.
s2. Second ditto.
s3. Third ditto.
s4. Fourth ditto.
s5. Fifth ditto.
ss. Sixth ditto.
s_{7}. Seventh ditto.
v_{1}. Impression of the first vertebral scute.
$v 2$. Impression of the second vertebral scute.
$v 3$. Impression of the third vertebral scute.
v_{1}. Impression of the fourth vertebral scute.
2. View of part of the dislocated right half of the carapace. The same letters and numerals signify the same parts.
3. Outline of the natural transverse curve of the carapace.

TAB. XV.

Skull of Chelone cuneiceps, nat. size.

Fig.

1. Side view.
2. Top view.
3. Base view.
4. Back view.

The letters and numerals indicate the same parts as in Tabs. I and III.

TAB. XVI.

Trionyx Hewrici.

Fig.

1. Upper view of the carapace, wanting the nuchal plate, half nat. size.
$s 1-s 7$. The first to the seventh neural plates inclusive.
$p l_{1}$-pl8. The eight costal plates of the left side.
2. Outlinc of the transverse curvature of the upper surface of the carapace.
3. The nuchal plate of probably the same specics of Trionyc ; but of another individual: half the natural size.

TAB. XVI A.

The carapace of the Trionyx Barbara, half nat. size.
a, Shows the longitudinal contour of the middle of the upper surface, and fig. 2, the transverse curvature of the carapace.

TAB. XVII.

Trionyx incrassatus.

Fig.

1. Inside view of the earapace, wanting the nuchal plate, half nat. size.
$s 1-s 7$. The first to the seventh neural plates, with the connate neural spines and arches.
$p l_{1}-p l_{8}$. The eight eostal plates of the right side.
c1. The place of attaehment of the outer end of the first dorsal rib.
$c_{2}-9$. The portions of the conseeutive dorsal ribs that beeome connatc with the costal plates.
2. Transverse eontour of the upper surface of the earapace.

Tandastigr

[^20]
TAB. XVIII.

Trionyx incrassatus.

Fig.

1. Upper or outside view of the forc part of the carapace with the nuchal plate, half nat. size.
ch. The nuchal platc.
s1. The first ncural plate.
s2. The second neural plate.
$p_{1}-p l_{3}$. The three antcrior costal plates of the left side.
2. Under or inside view of the same specimen.
ch. The nuchal platc.
s1. The first neural plate connate with the ncural spine of the second dorsal vertebra, of which part of the under surface of the centrum is here preserved and shown.
s2. The sccond neural plate, with the connate neural arch of the third dorsal vertebra.
$p l_{1}-p l_{3}$. The three anterior costal plates of the right side.
c_{1}. The place of attachment of the outcr end of the first dorsal rib.
$c 2$. The portion of the second dorsal rib that becomes connate with the first costal plate. $c 2^{\prime}$. The extremity of the rib that again becomes free.
c3. The third rib attached to the second costal plate.
c_{4}. The fourth rib attached to the third costal plate.

TAB. XVIII A.

Trionyx rivosus.

Fig.

1. Outside view of hinder half of the earapace, nat. size.
$p l 4-p l s$. The fourth to the eighth eostal plates inclusive.
2. Inside view of the same specimen.
$p l_{4}$-pls. The fourth to the eighth costal plates inclusive.
5-9. The ribs (fifth to the ninth dorsal inelusive) eonnate with the above eostal plates.
s6. The neural areh eonfluent with the sixth neural plate.

Dav\&Son With ": tro the Ouccn

TAB. XIX.

Trionyx incrassatus.

The parts are figured half the nat. size.
Fig.

1. Entosternal.
2. Episternal, under side.

2'. Ditto. upper side.
3. Part of right hyosternal, and the hyposternal, under or outer side.

3'. $h s$, Ditto, and $p s$, ditto, upper side.
4. Two vicws of the scapula (51), and connatc acromial clavicle (58) ; $4^{\prime \prime}$ shows the osseous structure of the end of the scapula, nat. size.
5. The coracoid.

6, 6'. Two views of the ilium.
$7,7^{\prime}$. Two views of the fcmur.
8, 8. Two views of an ungual phalanx, nat. size.
9. Under view of the sixth cervical vertebra; y, y, the hypapophyscs.

3'. Upper view of the same vertebra; c, the anterior convex articular surface of the centrum; n, the neural arch; z, z, the zygapophyses (oblique or articular processes).
$9^{\prime \prime}$. Back view of the same vertebra, showing the double concavity of the articular surface.

th Nat siye.

TAB. XIX + .

Trionyx marginatus.

Fig.

1. Upper view of the carapace, wanting the nuchal plate, half the nat. size. The letters and figures indicate the same parts as in Tab. XVI.
2. Outline of the transverse curvatures of the upper surface of the carapace.

TAB. XIXB.

Fig.

1. Upper surfaee of the third eostal plate, right side, of the Trionyx circumsulcatus, nat. size.
2. Artieular margin of ditto; showing the natural eurve and thickness of the plate.
3. Peripheral margin of ditto; showing the groove.
4. Upper surfaee of the third costal plate, right side, of the Trionyx marginatus.
5. Sutural margin of ditto.
6. Peripheral margin of ditto.
7. Upper surfaee of a fragment of a costal plate of the Trionyx pustulatus, nat. size.
8. Under surface of ditto, showing the large and prominent adherent rib.
9. Peripheral margin of ditto.

TAB. XIX C.

Trionyx planus.

Fig.

1. Upper view of the hind part of the carapace, half the nat. size.
2. Inside view of the same specimen ; pl5_pl8, the fifth to the eighth costal plates inclusive.
3. Peripheral border of the fifth costal plate, nat. size.
4. Peripheral border of the fifth costal plate of the Trionys Barbara, showing the difference in their relative thickness.
5.

TAB. XIX D.

Fig.

1. Under view of the lower jaw of a turtle (Chelone), nat. size. (Hordwell Cliff).
2. Upper view of the same speeimen.
3. Upper view of the fourth eervieal vertebra of a Trionyx; d, diapophysis. Nat. size.
4. Side view of the same speeimen (Hordwell Cliff).
5. The left os pubis of a Trionyx, nat. size (Hordwell Cliff).
6. Part of the plastron of Trionyx planus, half the nat. size; ks, hyosternal; $p s$, hyposternal.
7. Right hyposternal of a Trionyx, from Bracklesham, half the nat. size. (In the Collcetion of Frederiek Dixon, Esq., F.G.S.)

TAB. XX.

Emys Comptoni, nat. size.

Fig.

1. Upper view of the carapace.
2. Under view of the plastron.
3. Side view, showing the marginal plates, m-mi.
4. Front view.
5. Back view.

5

TAB. XXI.

Platemys Bullockii, half the nat, size.

The plastron and some of the marginal plates, a a.
s. Entosternal.
es. Episternals.
hs. Hyosternals.
ps. Hyposternals.
xs. Xiphisternals.
ig. Intergular scute.
gu. Gular scutes.
lu. Humeral scutes.
pe. Pectoral scutes.
ab. Abdominal scutes. The impression between these and the pectoral scutes crosses the intercalated supernumerary bones between the hyosternals and hyposternals.
$f e$. Femoral scutes.
an. Anal scute.
Where the bones or scutes are in pairs, the figures or letters are placed on one of each pair.

TAB. XXII.

Emys lavis, two thirds the nat. size.

Fig.

1. Upper view of carapace.
2. Under view of plastron.
3. Side view
4. Front view, showing the curvature and depth of the specimen.

The letters and figures signify the same parts as in the preceding figures; $h p$, the accessory pieees of the plastron.

$\stackrel{5}{5}$

TAB. XXIII.

Platemys Bowerbankii, half the nat. size.

Fig.

1. The mutilated carapace.
2. The plastron.

The letters and figures indicate the same parts as in the preceding Table.

TAB. XXIV.

Emys testudiniformis, nat. size.

Fig.

1. Nuchal plate.
2. Upper surface of the third neural plate.
3. Under surface of ditto.
4. Upper surface of the fifth neural plate.
5. A posterior marginal plate.
6. Front view of a mutilated cuirass in which the carapace has been slightly depressed; the natural curve, across the middle, is indicated by the outline.

TAB. XXV.

Emys bicarinata, wo fifths the nat. size.

The lettcrs and numbers on the carapaee, the upper surface of which is figured, indieate the same parts as in the previous figures.

The transverse contour of the earapace is given in outline above.

\therefore Nat SH,

TAB. XXVI.

Emys bicarinata, two fifths the nat. size.

The plastron; s, the entosternal piece. .ss, the xiphisternals.

TAB. XXVII.

Emys crassus, two thirds the nat. size.

Fig.

1. Outside view of the left hyposternal.
1^{\prime}. Inside view of ditto.
2. Outside view of right hyosternal.
2^{\prime}. Inside view of ditto.
3. Sutural border of hyosternal, nat. size.

TAB. XXVIII

Emys Delabechii, two fifths the nat. size.

Upper or outside view of the earapace; the transverse curve is given in the outline above.
$p l_{1-p l 8 . ~ T h e ~ e i g h t ~ e o s t a l ~ p l a t e s ~ o f ~ t h e ~ l e f t ~ s i d e . ~}^{\text {en }}$
$v_{2}-v_{4}$. The second to the fourth vertebral scutes inclusive.

PALeONTOGRAPHICAL SOCIETY.

INSTITUTED MDCCCXLVII.

LONDON:

FRED. E. EDWARDS.

Part I-CEPHALOPODA.
1849.

A MONOGRAPH

THE EOCENE MOLLUSCA,

OR

DESCRIPTIONS OF SHELLS FROM THE OLDER TERTIARIES OF ENGLAND.

PART I.

CEPHALOPODA.

LONDON :
PRINTED FOR THE PALEONTOGRAPHICAL SOCIETY.
1849.

PRINTED BY C. AND J. ADLARD, BARTHOLOMEW CLOSE.

A MONOGRAPH

MOLLUSCA FROM THE EOCENE FORMATIONS OF ENGLAND.

FIRST CLASS-CEPIIALOPODA. Cuvier.
Mollusca brachiata. Poli.
Cephalopodes. Lamarck; Férussac. Céphalophores. De Blainville.

The Cephalopoda form the first class of Molluscous Animals in the system proposed by Cuvier, and consist of the several encephalous mollusca whose organs of reptation are attached to the hcad. Possessing an organization more complicated and more fully developed than that of the other molluscs, they have a higher rank in the scale of existence. In a descending series they immediately succeed the Vertebrata.

It is in this class that the latest indication of an internal skeleton will be found. Among the more highly organized of the Cephalopods, the cephalic ganglia, to which, from their importance and development, the term brain may still be applicd, are surrounded and protected by a cartilaginous process, called the cranial cartilage, analogous with the cranium of a vertebrate animal, and in which the muscles of the arms and tentacula are inserted. Other cartilages, subservient to the muscles of the funnel and of the fins, where those organs exist, will be found in other parts of the body, and may be said to represent, in rudiment, those portions of the skeleton which in the vertebrate animals sustain their locomotive organs.

The Ceplalopods are eminently social animals; they are all predatory and voracious in the extreme, and appcar to be nocturnal or crepuscular in their habits. Some, the more highly organized, inhabit the deep seas only; others frequcrit the coasts or shallow seas, or conceal themselves in holes in the rocks. M. d'Orbigny, to whose recent work entitled 'Mollusques vivants et fossiles' I am largely indebted, shows that to these various habits the zoological peculiarities of the different genera are referable; and he distinguishes the animals as pelagic (pelagiens), or littoral (côtiers), according to the fact of their frequenting the deep sea or the coasts.

The Cephalopoda have a distinct head, surrounded by arms or tentacula; they possess organs of sight and hearing, closely resembling those of vertebrate animals,
and they are endowed with the sensc of smcll. The eyes are placed on the sides of the head, and in one of the two orders into whieh the animals are divided (the Dibranchiata) are, generally, lodged in an orbital eavity in which they move frcely; in some genera, however, they are united to the outer integument, and are then ineapable of motion. When lodged in orbital eavities, they exhibit two distinct modifieations, of which M. d'Orbigny has availed himself for the subdivision of the order into two groups (callcd respectively Myopsida* and Oigopsidat). In the first modification, which is found among the littoral Cephalopods, the cyes are wholly covered by the skin of the head, which becomes thin where it passes over the ball of the cyc ; in the other modification, which eharactcrises the pclagie speeics, the orbital cavity is largely open, and the cyes are in contact with the water.

In the tetrabranchiate Cephalopod, whose food is found prineipally at the bottom of the sea, and to whom enlarged vision would be eomparatively uscless, the eye is not lodged in an orbital cavity, but pedieillated, and assumes a simpler structurc, approaching that of the inferior mollusc.

These animals possess an external auditory opening, gencrally proteeted by an external ear more or less complicated in structurc. The organs of smell are supposed to reside in ecrtain pores or saes, opening extcrnally, termed by M. d'Orbigny aquifcrous pores (ouvertures aquifères), which are divided into cephalic, oral, anal, and brachial pores according to their position, and arc used by him as generic distinetions. The mouth is terminal, and is furnished with two strong, horny beaks or jaws termed mandibles, working vertically upon cach other like the bill of a parrot, with which they are usually eompared.

The body is inclosed in a thick membranous skin or mantle, united along the belly of the animal so as to form a muscular bag or sac, open at the upper extremity, and eontaining the branchial apparatus and viscera. In its gencral shape it is round, or more or less elongatcd, and eylindrieal or depressed. To this body, distinguished as the postcrior portion of the animal, the anterior or cephalic portion, consisting of the head and the arms or tentacula it sustains, is attaehed by one or morc ligaments, some internal, others formed by the continuation of the skin of the body, and termed cervical or lateral ligaments, aceording to their position. The condition of these ligaments varies with the habits of the animal, and upon it generic characters are founded. They attain their greatest strength in the littoral Cephalopods, and in some genera afford a sufficient attachment between the head and the body; but in the Cephalopods more or less pelagie, in which the free and independent use of the organs of prehension, and a simultaneous aetive exercise of the bodily locomotive function, would be materially impeded by an extensivc permanent attaehment, the ligaments are considerably reduced; so much so, in fact, that they would afford a very imperfect

[^21]guard against the resistance caused by the rapid motion through the water of a mass so large as the ccphalic portion of the animal. To obviate this defect, a peculiar apparatus is found in various Cephalopods, which, capable of being instantly brought into action, provides an additional and firm attachment of the head to the body. This apparatus is variable in form, and, except in three genera in which it is not found, forms one of the most ccrtain generic characters. It consists of one or more cartilaginous or fleshy protuberances, placed on each side either of the inner surface of the body or of the base of the head, which fit into corresponding holes or dcpressions formed for their rcception in the oppositc part of the head or body. This apparatus, termed by M. d'Orbigny the apparatus of resistance (l'apparcil de resistance), has relation to the swimming power of the animal, and is more or less complicated as that increases or diminishes.

The respiratory apparatus consists of two or four lamelliferous branchie or gills, lodged in chambers containcd in the visccral sac, but separated from the viscera by a membranous partition. The number of these gills has been adopted by Professor Owen as an ordinal distinction; and, in the system of classification proposed by him, to which I shall hereafter refer, the Cephalopods are divided into dibranchiate and tetrabranchiate orders according to the fact of their possessing two or four branchiæ. Into the chambers containing the gills, the water is frecly admitted by a valvular aperture, and having served the purpose of respiration, flows, or is forcibly ejected by the muscular contraction of the body, through the excretory tube or funncl (infundibulum). The water thus cxpelled in streams more or less powerful and frequently repeated, at the will of the animal, causes a retrogressive movement, which forms its principal mode of locomotion, from which circumstance the tube itself is called by M. d'Orbigny the locomotive tube. The body thus becomes the most important locomotive agent; and as its size and shape must matcrially influence the retrogressive motion, we can readily conceive that they will have relation to the exigencies of the animal for swimming. Thus the pelagic species, in which the body, from its comparative sizc, and its cylindrical form and tapering extremity, is adapted to contain a large quantity of water, and to move through the sea with facility, are, as thcir nccessities would require, pre-eminently powerful swimmers; while, on the other hand, in the littoral specics, to which great retrogressive power would be not only unnecessary, but a source of frequent injury, the body is small and rounded, or depressed, so as to afford a broad surface on which the animal can rest upon the ground.

Among the dibranchiate Cephalopods the circulation is performed by the agency of a central or systemic heart, of two latcral hearts, subscrvient to the propulsion of the blood through the branchire, and thence called the branchial hcarts, and of a venous system consisting of two principal vessels, vence cave, containcd in a cavity called by Professor Owen the pericardium, and communicating freely with the branchial chambers, and of other subordinate trunks or vessels. In this cavity terminates the
tube called the siphon or siphuncle, which perforates and traverses the chambers of all the multilocular shells, whether external or internal,* and by means of which, as it has generally bcen supposed, the animal can diminish or increase the specific gravity of the shell, and so facilitate its rising or sinking in the water.

In the recent Nautili, the sole living representatives of the tetrabranchiate Cephalopods, the lateral hearts are wanting, the enlarged surface of the branchial apparatus rendering such additional means of circulation unnecessary.

The funnel or locomotive tube is placed beneath the head, and supports at its base the apparatus for resistance before noticed. Its functions are various: it conveys away the water inhaled for respiration after that object has been served, and, as we have already seen, becomes, at the will of the animal, the principal locomotive agent ; it is also the excretory tube. The condition of this organ is used by Professor Owen as an ordinal character ; in the dibranchiate Cephalopods the parietes of the funnel are entire, while in the tetrabranchiate Cephalopods they are disconnected along the ventral margins.

A peculiar provision for defence is found among the naked Cephalopods, which is denied to those protected by an external shell ; this provision consists of an organ for secreting and expelling an inky fluid, by the effusion of which the animal, when alarmed, is enabled to discolour the surrounding water, and thus to facilitate or conceal its escape. The fluid is contained in a bladder-shaped sac, called the ink-bladder, and its presence may be regarded as a certain indication of the dibranchiate type of organization. \dagger

In addition to the retrogressive power possessed by all the Cephalopods, and derived from the agency of the funnel, the decapodous genera are provided with lateral or terminal fins, more or less coriaceous, according as the habits of the animal are more or less pelagic or littoral. The motive function of the fins, however, appears to be secondary; those organs being used chiefly to sustain or steady the animal, and direct its course through the water. The position of the fins is used as a generic character.

The dibranchiate Cephalopods carry on their heads eight or ten arms, the place of

[^22]whieh, in the tetrabranehiate Cephalopod, is supplied by a multitude of tentaeula grouped around the mouth. These arms or tentaeula are organs as well of locomotion as of touch and prehension. In the dibranehiate Cephalopod the arms are furnished with suckers (acetabula), and are of two kinds, viz. : eight sessile arms eneireling the mouth, and eonnected at the bases by a museular web more or less broad; and two tentacular arms placed one on each side, and eapable of considerable extension. The Oetopods are furnished with the sessile arms only; the Deeapods possess also the tentacular arms. The development of the sessile arms appears to be in inverse ratio with the retro-swimming power of the animal, and, conscquently, as we have before seen, with the size of the body. In the pelagic Deeapods, which possess the highest retro-swimming power, and whose body is comparatively large, the arms are short; while in the finlcss Octopods and the littoral Deeapods, whieh have small bodies, and are consequently bad swimmers, and whose habits require the means of creeping along the ground, the arms arc infinitely larger, and the connceting web is broader, so that they serve also for reptation.

The arms, to adapt them more perfeetly for prehensile purposes, are provided with suckers plaeed in serie, on the inner surfacc. These are sometimes simple, i. e. unarmed; but in some genera they are surrounded by a horny dentated hoop, and in others are uncinated, or armed with sharp, horny hooks. When the prey is onee seized by this formidable apparatus, escapc is hopeless. In the tetrabranchiate Cephalopod, whieh is always attached to a dense caleareous shell, and whose prineipa! food appears to be the erustaeea or testacea living at the bottom of the sea, the complicated meehanism of the arms entirely disappears, and the animal is provided with numerous, small, retraetile tentacles, by which the sense of toueh, as neecssary to it as entarged vision is to the dibranehiate Cephalopod, is largely developed.

The presenee of the sucker bearing arms, or of the tentacula, is an ordinal distinetion, and has bcen adopted by the Freneh naturalists for the designation of the two orders, corresponding with the dibranchiate and tetrabranchiate orders of Professor Owen, into which they have divided the Cephalopods; the armed and unarmed eonditions of the suckers are also used as subordinal and generic distinctions, and characters of families and genera are founded upon the retraetile power of the tentacular arms.

Exclusive of the impulsion derived from the funnel, and the capacity to rise and float in the sea whieh the chambered and siphonifcrous shell affords, the tetrabranchiate Cephalopod ean only creep, like the gasteropods, along the bottom of the sea by means of the free and expanded margin of the anterior extremity of the body.

The animal whose zoologieal peculiarities have been thus eursorily notieed, is sometimes lodged in a symmetrieal shell, unilocular or camerated (multilocular), that is, presenting a serics of ehambers divided from each other by thin partitions (septa), and suecessively added by the animal to mect the exigeneics of its inereasing bulk, and in
the last of whieh the body is contained. The partitions present the greatest variety of form ; being in faet moulded upon the animal, they indieate eorresponding zoologieal peeuliaritics, and generie distinetions have been founded upon them. Among the Nautilide, one of the families into whieh the tetrabranehiate Cephalopods are divided, the posterior extremity of the body is round and without any projecting part, or lobe as it is termed, and the septa therefore are eharaeterised by simple curvatures or undulations, and their margins are always entirc; and thus we are led by analogy to believe, that in the Clymenide the animal had an angular lobe on eaeh side of the body, from whieh the sinus, whieh eharacterizes their septa, would take its form; and that in the Ammoniticle the posterior extremity of the body had many lobes, the edges of whieh were foliated, whence the septa assumed eorresponding curvatures with foliated margins. Sometimes, and this is most generally the case among the reeent Ceplalopods, the animal is without the proteetion of an external shell; but it is then supplied either with a calcareous ehambered shell almost wholly buried in the animal, or witl a horny or ealcareous substance, simple, or more or less eomplieated in form and strueture, wholly internal, and eneysted in the back of the mantle. From the presence or absence of the external shell, the Cephalopods liave been, and in fact still are, popularly divided into shell-bearing and naked Cephalopods, although in the systematic arrangement proposed by Professor Owen these terms have a more restrieted application.

The chambered shclls are eharacterised by a peeuliar apparatus, by means of whieh, as it has been generally supposed, they are made subservient to hydrostatie purposes, although the precise mode by which that end is attained is merely eonjeetural. From Professor Owen's deseription of the Nautilus Pompilius, it appears that the posterior part of the visceral sac is prolonged in the form of a membranous tube, whieh, passing through a short ealeareous collar, formed in the disc of each septum, and called the testaccous siplion, traverses the different chambers to the extreme nueleus of the shell. This tube, with the ealeareous eollar which, more or less, eovers and proteets it, is termed the siphon or siplancle, and is found in all the multiloeular shells strictly so ealled, whether external or internal, recent or fossil ; and its position with referenee to the margin of the shell, is used as another distinetion between the Ammoniticla, the Clymenida, and the Nautilida; being ventral or external, that is, plaeed near the outer margin, in the Ammonitidæ; eentral, that is, at or near the middle of the dise of the septum, in the Nautilida; and dorsal, that is, elose to the preceding volution, in the Clymenida.

The process by whieh the external shells of the Cephalopods are eonstrueted does not appear to differ essentially from that used by the inferior molluscs. Professor Owen has deseribed the mode of growth in the Nautilus Pompilius; and we are led by analogy to the eonelusion, that the shells of the extinet Nautili and the Ammonites, and their various eognate genera, were formed in the same way. In the recent

Nautilus the animal is attached to the shell by two large lateral muscles, called the adlerent muscles, and by a belt or cineture of horny matter, which complctely encircles the posterior part of the visceral sac, and expands at the sides into broad discs, which serve as the medium of insertion of the adherent muscles; and the prolonged posterior extremity of the visceral sac, forming the membranous siphuncle, is a third mode of attachment. As the animal increases in size, the adherent muscles and the cincture gradually advance their line of attachment, and the membranous tube at the same time lengthening in proportion, a cavity is thus formed between the septum and the lower portion of the visceral sac. A deposition of calcarcous matter by the surface of the mantle then takes place, commencing at the sides of the shell, and procceding towards the membranous tube, round which it is continued backward, and forms the calcareous or testaeeous siphon. Thus, as the animal increases in bulk, the dwelling-chambers are successively formed and converted into air-chambers, by means of which the specific gravity of the shell and its contents is maintained nearly in equilibrio with that of the surrounding water. During the growth of the animal the anterior portion of the mantle secretes calcareous mattcr, which it deposits in successive layers on the margin of the aperture; and thus the enlargement of the outer wall of the shell is effected. I must add, that the thcory of the gradual advance of the adherent muscles and the cincturc during the growth of the animal is opposed to the opinion of M. d'Orbigny, who, in his hypothesis as to the function of the siphuncle, noticed subsequently, maintains in effect, that the advance of the muscles (and, I presumc, of the cincture also) is periodic.

The Argonaut presents an extraordinary deviation from the general Jaws which govern all other molluscous animals; inasmuch as the animal, although perfcctly free and unattached to the shell it inhabits, is not now considered to be a mere parasite,*

[^23]as at first was supposed to be the case, but the actual fabricator of the shell; and it is believed that the broad membranes usually termed vela or velamenta, into which the extremities of the posterior pair of arms are expanded, and which usually envelope the shell, are the organs by which the deposition is effected; the mantle itself, apparently, not being capable of a calcifying secretion.
'The beaks or mandibles with which the mouths of the Cephalopods are armed, vary in structure according to the habits of the animal. In the dibranchiate Cephalopod, whose principal food consists of fish, the mandibles arc sharp, and entirely composed of horn ; but, with the tetrabranchiate Cephalopods, the mandibles are blunt, and cased at their extremities with hard calcareous matter, adapted for the crushing of shells, and the defensive coverings of crustacea. The fossil substances called Rhyncolites, resembling the mandibles of the recent Nautilus, and found associated with the numerous chambered shells so abundant in the sccondary and transition formations, appear to be remains of Ammonites, and the other cognate cxtinct genera by which those shells were inhabited.*

That the external chambered shells of the Cephalopods act in the same way as the swimming bladders of fish, and serve as floats, is obvious from the circumstance that, when deserted by the animal, they swim on the surface of the water. To an animal seeking protection against its enemies, by an instantancous sinking in the sea, this tendency of the shell to float would prove a scrious and dangerous impediment, if the animal itself did not possess the means, in somc way or other, of increasing on the instant its specific gravity; and it has long been the opinion of naturalists that the siphuncle is subservient to this purpose, although a difference of opinion has prevailed as to the mode of operation. Dr. Hooke, so far back as the beginning of the last century, expressed an opinion that the Nautilus had the power of generating air to fill the desertcd chambers, and that by the injection or exhaustion of this air through the siphuncle, the specific gravity of the shcll could be diminished or increased. It is ascertained, however, that there is not any communication between the siphuncle and the empty chambers; and Mr. Parkinson, who, in his 'Outlines of Oryctology,' adopts an hypothesis similar to Dr. Hookc's, suggests that the tube is elastic and dilated by gaseous or aqueous fluids, the alternation of which produces a corresponding change in the specific gravity of the shell. Dr. Buckland

[^24]maintains that a fluid is contained in the pericardium, the position of which is altcrnately changed from that cavity to the siphuncle; and that in this shifting fluid the hydraulic balance consists, the chambers being filled with air alone, the elasticity of which would admit of the alternate expansion and contraction of the membranous siphunclc. Prof. Owen has pointed out objections to both these hypothescs. The only organ apparently by which the gaseous fluids of Mr. Parkinson's theory can be secretcd, is a small artery continued down the siphon, but which would not be adequate for the purpose ; and the form and size of the siphon would not allow of an escape of gas so free as to make the conscquent sinking of the shcll sufficiently rapid for defensive purposes. In some extinct spccics of Nautilus the membranous siphuncle appcars to have bcen capable of considcrable dilatation, instances of which are mentioned by Dr. Buckland; but Professor Owen states that, in all the specimens he had cxamined, the membranous siphuncle, after the first chamber, presented an inextensible and almost friable texturc, and was coated beyond the extremity of the testaceous siphon with a thin calcarcous deposit; and that, in certain extinct species, the tcstaccous or calcareous siphon extended from scptum to scptum, rendering a dilatation of the membranous tube physically impossible. The calcareous siphon of the recent Spirula, as is well known, cxhibits this form of structure. It is ascertained that, by the conversion of the dwelling-chambers of the animal into what may be termed air-chambers, the specific gravity of the Nautilus, and of its shell, may be maintained nearly in equilibrio with that of the sea. This equilibrium would be very sensibly affected by the position of the body of the animal with reference to the shell; and Professor Owen thercfore inclines to the opinion* that the variation of the specific gravity is caused chiefly by changes in the cxtent of the surface exposed to the water, according as the body may be cxpanded beyond the aperture of the shell, or more or less withdrawn within the dwelling-chamber. At the same time it is not improbable that the siphuncle, filled with the fluid propelled into it from the pericardium, in consequence of the pressure caused by the contraction of the animal within the shcll, may assist in affecting the specific gravity; it certainly, however, does not appear to be capable of varying the specific gravity of the shell sufficiently for the wants of the animal, and that function, if attributable to it, must consequently be mercly secondary. I am thercfore inclined to agrec with M. d'Orbigny, who rejects the supposition that the action of the siphuncle is hydrostatic. That naturalist assigns to the membranous tube which enters the calcarcous siphon, and communicates with the pericardial cavity, a function widely different, and only to be called into action when the animal constructs a new air-chamber. "On this occasion," he says, " many difficulties have to be overcome; the extremity of the body is attached above the last

[^25]septum (en dessus de la derniere cloison) by two powerful muscles; and the animal, always increasing in bulk, must detach its body, and remove and place itself at a determinate distanee whenever it wishes to form a new partition. There must also be left, between the penultimate partition and that whieh the animal is about to construct, a space to be filled with air, while the animal is always under water." And M. d'Orbigny therefore suggests "that the membranous tube and pericardial cavity are required, when the new chamber is construeted, to empty the water contained in it, and to fill it with air before the siphon entirely closes its wall in the interior of the new air-ehamber." This hypothesis does not appear to be more satisfactory than the one involving a hydrostatie function. No allusion is made in any way to the attachment of the animal to the shell by means of the horny or epithelial cincture whieh, as we have seen, encireles the lower part of the body. This cincture, in fact, hermetieally closes the space between it and the last septum; and, unless it is detached, there would not be any external entrance through whieh the water eould pcnetrate, and the function, the objeet of the hypothcsis, becomes umnecessary. I cannot think therefore that this important attachment was overlooked; and I assume that M. d'Orbigny, when he says that the animal "must detaeh its body," means that it must detach not only the adherent muscles which he mentions, but also the horny eincture, to whieh he does not allude. Conceding this to be the ease, then, the hypothesis in question assumes that the advanec of the body, preparatory to the formation of the new partition, is not gradual ; but that the animal, by sudden and nearly simultaneous efforts, detaehes the adherent museles and the cineture, and removes its body to the necessary distanee. In all other testaceous molluses, the advance of the adduetor and adherent museles is caused by the deposition of new matter, by means of a thin membrane, part of the pallial membrane, interposed between the extremity of the muselc and the inncr surfaee of the shell. The deposition is made, particle by particle, on the antcrior part of the musele, portions of the posterior part probably beeoming detaehed and absorbed; but this process is so gradual, that the attachment of the animal to the shell-an attaehment, in fact, necessary to its existenee-is notaffeeted; and thus the muscle advances slowly and imperceptibly. There does not appear to be any reason for supposing that a law prevails among the cephalopodous molluscs different from that whieh regulates the advance of the adherent muscle in the testaceous gasteropod. We may readily conceive, on the contrary, that the entire detaehment of the museles and of the cincture would be attended with considerable ineonvenicnee to the animal; for, in that condition, the fulerum or resisting power by whieh the animal is enabled to use its tentacles and other organs effieiently, and whieh is cssential to its existenee, would be tcmporarily lost. The sudden removal of the body forward would probably, although it cannot be assumed that it rould nccessarily, eause the rupture of the membranous siphon, for that organ may be suffieiently elastie to streteh to the required
distance; but the rupture is, in faet, required by the hypothesis, and the animal would thus be deprived at once of all its means of attachment to the shell. Neither by this periodie advance would the equilibrium of the specific gravity be maintained. We are warranted, I think, in assuming that the speeific gravity of the animal and its shell, without the siphuncular aid, would be most nearly in equilibrio with that of the surrounding sea immediately after the formation of a new septum. Now the growth of the animal would eonstantly tend to derange this equilibrium, until the period should arrive for the formation of the new septum. The capability of the animal, therefore, to rise and sink would be as constantly fluctuating, unless there existed some mode of eompensating for the increasing bulk of the body during the interval between the formation of the penultimate septum and that of the last. This compensation, howevcr, would be provided in the case of a gradual advance of the line of attaehment; for the vacated part of the dwelling-chamber, filled with exhalations from the animal, and increasing in size as the body is advanced, would become an air-chamber as effective as if it were inelosed by a new septum; while, on the other hand, a periodie advance of the muscles and eincture would deprive the animal of this mode of maintaining the equilibrium.

I have mentioned the rupture of the mombranous tube, which would be the eonsequence of the sudden advance of the body; in fact, the hypothesis which attributes to this tube the function of earrying off the water admitted into the vacated part of the shell by the detachment of the cincture, requires, cx nccessitate, that the tube should be ruptured in order that the water should enter it; and in that case the membranous siphon in the descrted chambers would eonsist of detached fragments extending from septum to septum, and which, having fulfilled their object and beeome severed from the animal, would no longer retain vitality. This, however, is not the faet. The membranous tube is eontinued entire through all the septa to the extreme air-chamber,* and is a vascular organized substance, provided with an artery and a vein for its nutrition ; and it maintains its vitality during the life of the animal. We are compelled, therefore, to think that the function of the siphuncle must be eoextensive with the animal's existence. On these grounds, the theory suggested by M. d'Orbigny is not more satisfactory than the hydrostatie thcory whieh he rejects. Whatever the function may be, it is evident that the air-ehambers themselves would be as efficient a float witlout the siphon as with it; and the alteration of the speeific gravity, as has been stated, may and in all probability is, effeeted simply by the animal protruding or withdrawing the eeplatie mass from or into the dwelling-ehamber of the shell, or, as

[^26]M. de Blainville has shown to be the case in Spirula, within a cavity formed by the anterior extremity of the mantle. We may reasonably infer, therefore, that to assist in varying the specific gravity is not the prineipal function of the siphunclè. But, in any view, the preservation of the deserted chambers, as air-chambers, is essential to the motive power of the animal ; for it is only by their tendency to float when the cephalic mass is protruded, that the animal is enabled to rise; and this nicelyadjusted counterpoise is maintained, as we have seen, by the addition of new airchambers, as the animal and the shell inerease in size. It is obvious, therefore, that the hydrostatic balanee would be destroyed if any one of the deserted chambers were so injured as no longer to aet as a float. Now it is known that the shells of the testaceous molluses are not wholly inorganic substanees; but that a vital conmunication is maintained between them and the animals, and that where this communieation eeases, the descrted whorls of the shell lose their vitality and become brittle; the ealcareous matter falls off in particles, and the shell is much more suseeptible of injury. In Bulimus decollatus (Helix decollata, Linn.) and other similar shells, in which the earlier whorls are wholly deserted, the animal on withdrawing its body forms behind its extremity a concave septum. In these cases the apex of the shell, no longer neccssary, is easily broken off; in which statc the shell is said to be decollated.* In the siphonifcrous shells, however, the preservation of the chambers, as air-chambers, is, as we have already scen, essential to the motive power of the animal. It is true that in the Nautilus, the mode of convolution, upon a vertical axis, is admirably adapted to strengthen and protect the first-formed volutions; but in shells not so constructed, and even in those possessing the nautiliform mode of convolution, it would appear to be essential that the vitality should not be lost. How, then, is the necessary communication between the animal and the air-chambers maintained, and the vitality of the descrted shell preserved? It has been shown that the siphuncle traverses the chambers to the cxtreme nucleus of the shell, and that it is provided with a small artery and vein; and we also learn from Professor Owen's Memoir, that in the Nautilus "a delicatc pollicle, distinct from the tube, is continued over the outer part of the testaeeous tube, and also over the whole inner surface of the chamber." May we not then reasonably regard the siphuncle with its artery and vein, and the pellicle lining the air-chambers, as the organs destined to maintain the vitality of the shell, and feel ourselves justified in considering this office to be in fact the primary function of the siphuncle? And when we bear in mind that the internal shells, from

[^27]their terminal or, as in Spirula, their exposed position, are particularly liable to injury from the shocks caused by the retrogressive movements of the animals, we shall find that the hypothesis will be as applicable to them as to the external shells. In the extended series of observations madc by Dr. Carpenter upon the microscopic structure of shells, it is shown by that gentleman that the outer covering or shelly mass of molluscous animals is invariably permcated by an organized membrane, and he says (Report Brit. Assoc., 1844, page 9): "I am much disposed to believe that in every distinct formation of shell substance there is a single layer of membrane, and I am further of opinion that this membranc was at onc time a constituent part of the mantle of the mollusc." He further represents this membrane to have, more or less, a cellular arrangement, the interstices of which are filled with carbonate of lime or inorganic matter; and, at page 10, he says: "Coupling the appearances which I have myself observed, with the observations of Mr. Bowerbank, on the formation of shell, and kceping in view the general doctrines of cell action which I have clsewhere endeavoured to develope, I am inclined to believe that these cells are the real agents in the production of the shell, it being their office to secrete into their own cavities the carbonate of lime supplied by the fluids of the animal." He does not appear to have extended his researches so far as to determine whether any or what amount of vitality is possessed by these membranes; but from the continuity and intimate connexion of this beautiful network, permeating the entirc substance of the shell, we may imagine that some slight degree of vital existence pervades the whole membranc, by which it is possible that the inorganic matcrial is preserved from disintegration. In those shclls which appear to have been subject to the crosive action of acidulated waters, or other external agency, such as the apices of Ceriltia and the umboncs of Cyrence, the part most affected is that which is furthest removed from the main body of the animal ; while that part of the shell which is in close proximity with the mantle is not, or at least but little, altered; probably owing to its greater vitality, and to its being the part most essential for the protcction of the animal. Not only is the entire formation of shelly matter permeated by an organic membrane, but in some of the shelly coverings of molluscous animals in the order Brachiopoda, there is a very peculiar structure, somewhat analogous with what has been before suggested as the especial use of the siphuncular tube in the Cephalopoda. Dr. Carpenter has pointed out that in most, or perhaps in all, of the nonplicated species of Tercbratula, the whole surface of the shell is perforated with innumerable pores, into which are inserted vascular portions of the mantle of the animal, of a tubular form, and filled with fluid, which have no communication with the exterior, but are closed at the outer surface of the shell, and occupy the entire space of the pores. These cæcal appendages may be for the purpose of distributing a greater degree of vitality through the body of the shell; though for what especial purpose this provision is required in one group more than another, it is not easy to explain; perhaps a greatcr degree of strength is
required in the nomplicated shell, for the preservation of an animal, whose habitation, for the most part, is at a considerable depth, where the pressure of water is much increased, than in the plicated species, the peculiar construction of which would afford sufficient resistance, without that additional support which the smoother species may receive from this singular structure of the mantle. If, however, a necessity exist for the prescrvation of the shcll in ordinary cases, how much more essential would it be that some compensating power should be possessed by an animal whose existence, in all probability, is dependent upon the buoyant principle of its partitioned shell; and how probable does it appear that this, an ordinary provision, should be employed for its protection.

The tubular character of the siphuncle suggests an hydraulic action. To explain this, it is necessary to invest the animal with the power of cmptying and filling the tube at discretion; and this power it may be presumed to derive from the pressure upon the pericardial cavity, caused by the folding and contracting within the shell of the large cephalic mass. Under this pressure the fluid would be injected the whole length of the siphuncle, and, on the removal of the pressure, would return into the pericardium, to be therc renovated and vivified with the other fluids, to be again injected when the animal returns within the shell. If the siphuncle had been a solid body, or composed of muscles, fibres, \&cc., it would have required to be permeated with artcrics, bloodressels, \&c., for its sustenance; but by the simple process of the fluid returning into the body of the animal, all the complicated apparatus necessary to sustain a fleshy body is superseded; circulation and renovation are accomplished, and the fluid is thus maintained in a condition capable of affording the nourishment to the shell which the present hypothesis requires.

The theories here suggested are, as all other theories on the same subject must for the present be, merely speculative; for, to quote the observation of Professor Owen," "much remains to be done beforc the thcory of the chambers and siphuncle can rest on the sound basis of experiment and obscrvation." These alone will satisfactorily dctermine the real purposes of the mombranous siphuncle; but, for my own part, I believe that the primary, and probably the only, function of that organ is to maintain the vitality of the shell, and that it may be looked upon as an elongated cæcum; and that it is not, under any circumstances, used by the animal as a hydrostatic balance.

It is unnecessary here to particularise the various forms of external shells presented by the cxtinct tctrabranchiate Cephalopods, inasmuch as, of the numerous genera which swarmed in the ancient seas, only the Nautilus survived the sccondary period.

The dibranchiate Cephalopods, with the exception of the genus Argonauta (which, with Bellerophon, constitutes Professor Owen's family of testaccous Octopods), are without

[^28]external shells; but they are provided with internal horny or calcarcous substances, encysted in the back of the mantle, and frequently not in any way attached to the animal, but loose in the cells containing them. In the naked Octopods these internal substances are of the simplest form, and consist of two short, horny, gelatinous styles. Among the Decapods, they become gradually more complicated in structure. In the Loligida, the Loligopsida, and the Teutlitia, they assumc the form of a horny plate, termed the gladius, which in some gencra is thin and feather-shaped, or more or less spatulate, lanccolate, or ensiform; and in others, they are elongated, narrow, and terminatcd posteriorily by a simple cup-shaped appendage. In the Sepicle the shell presents a serics of thin calcareous plates, not siphonifcrous, but separated by numerous exceedingly minute pillars, and forming a convex mass terminated by a mucro or spine; in the Belemnitide it consists of a chambered cone perforated by a siphuncle, and lodged in a cavity formed in the upper portion of a calcareous rostrum, more or less pointed or obtuse; and in the Spirulida, the sole remaining family, it is a calcareous, horizontally convolute, multilocular, and siphonated shell, with distinct whorls, and imbedded in the animal, but having portions of the last whorl merely covercd by the outcr layers of the skin. These differences in structure appear to be always accompanied with distinct zoological forms ; and hence the Palæontologist is enabled to form a tolerably correct judgment of the analogy between the existing specics and those which inhabitcd the ancient seas, although the testaccous remains are, most frequently, the only means of comparison afforded to him.

These internal shells are formod by secretions, from the internal surfaces of the cells, of a horny or calcareous substance, which is deposited in successive layers, and by the continual addition of which they increase in size as the growth of the animal procecds. Their functions are various, and in accordance with their particular structure. When the internal shell is gelatinous or horny, as in the Octopoda, and in the Loligida, Loligopsida, and Teuthida, the function is chicfly to support and strengthen the body, analogous with that of the boncs in the vertcbrate animals. It appcars that the greater or less length of the sholl has always relation to the swimming power of the animal. When the internal shell is horny or calcareous, and contains parts filled with air, as is the case in the several other decapodous families, it acts as a float; and in this function, like the cxternal shell of the tetrabranchiate Cephalopods, it represents the swimming bladder of fish; but the volume of air contained within the shell is, apparently, in an inverse ratio with the swimming power of the animal. In addition to these functions, the internal shells, which are provided with a mucro or rostrum at their posterior extremities, as in the Sepida and Belemnitida, are cnabled by its means to break the force of the shocks causcd by the body striking against any hard substance in its retrograde motion. In the recent Ccphalopods this protection is confined to the Sepide, the most littoral of all the Cephalopods: to the deep-sea swimmers it is denied; it would in fact be
useless to them. We may assume, therefore, that in the extinct Cephalopods the presence of the mucro or rostrum will indicate a littoral animal. M. d'Orbigny states that he has always obscrved in the Sepia, the extremity of the mucro projecting beyond the body, and it is not improbable that this part of the shell may be used, as he suggests, for defensive purposes, and that it is protruded at the will of the animal.

The Cephalopods, highly organized as they are in comparison with the other molluses, are among the earliest forms of animal life which geology has brought to light. The Silurian group, the most ancient fossiliferous formations with which we are aequainted, contains the remains of one species of Nautilus, and of many species belonging to cognate genera. Scveral species of Goniatites, an anomalous genus belonging to the Ammonitide, and connecting that family with the Nautilida, also occur. As we ascend in the Palæozoic scries, we find that various of the primitive gencra and species disappear, and are succeeded by other forms, distinct from, although closely allied to, them ; which, in their turn, are also lost. On passing into the Mesozoic scries a marked change takes place. Of the eight gencra constituting the family Nautilida, which lived during the Palæozoic cpoch, Orthoceras* and Nautilus alone survive; and of the long series of species belonging to the latter genus, whose remains are found in the carboniferous formations, every one disappears; but an immense array of Ammonites starts into existence, with septa at first comparatively simple, but becoming more complicated in structure in the succecding formations. The dibranchiate Cephalopods now first appear. \dagger In the Oolitic group, twenty-five species of Belemnitc, and remains of varions genera belonging to the families Loligida and Teuthida, have been found. The Belemnitcs occur in incredible quantitics, and sometimes form entire strata. Passing into the Cretaceous group, we still find the Nautilus, though of diminished importance; the Ammonites are reduced in number to little more than a fourth part of the species found in the Oolitic group, and new modes of convolution appear in their shells, on which the several other genera constituting the family Ammonitide are founded. The family itself gradually diminishes as we asecnd in the Cretaceous group, and wholly disappears with the sceondary period. The Belemnites appear to be the sole representatives of the dibranchiate Cephalopods during this epoch, and with it they also perish. On entcring into the tertiary formations we find, that of the rich and varied assemblage of tetrabranchiate Cephalopods which characterised the fauna of the secondary period, only the Nautili survived. On the Continent their remains are found in the Eocene formations, and also in the Miocene formations, at Turin and in Touraine; but in this country they are confined to the older Eocenc deposits. Of

[^29]the dibranchiate Cephalopods, two species of Argonaut have been found in the newer tertiary formations on the Continent; and two genera belonging to the family Belemnitide occur in the beds of the Paris basin, and in the Eocene formations of England. The remains of one of these last are very closely allied to the recent Sepia, and have been generally referred to that genus. M. Voltz, in his 'Observations sur les Bélemnites,' pointed out certain differences which induced him to propose a new genus, named by him "Belosepia," for their reception. The French Palæontologists reject this genus as having bcen proposed on insufficient grounds; but, for the reasons stated in a subsequent part, it ought, as it appears to me, to be retained. The other remains found in the Paris basin, connect Belosepia with Belemnite; and the genus Beloptera has been established by M. Deshayes for their reception. Both these genera occur in the London clay and in the Bracklesham sands; and they, together with certain remains found in the neighbourhood of London, and described by Mr. James Sowerby in the Mineral Conchology as Beloptera anomala, and for the reception of which I have proposed the new genus Belemnosis, are the only remains of dibranchiate Cephalopods which as yet liave been found in the tertiary formations of England.

That these animals fulfilled in the ancient seas the office of repressing animal life cannot be doubted. The living Cephalopods are voracious in the extreme; and, as we find that throughout the transition and secondary groups the number of the zoophagous Trachelipods is small in comparison with that of the phytophagous Mollusca, it is not unreasonable to seek in the Cephalopods for that check upon an excessive increase of submarine life, which the other zoophagous molluscs were too inconsiderable in number to afford.**

There is scarcely any class in the animal kingdom of the anatomy and habits of which zoologists have so long remained ignorant, or of which the systematic arrangements proposed have been so conflicting as the class Cephalopoda. Composed, as it is, of animals in their external construction and appearance remote from all others, and widely differing among themsclves, we need not feel surprised at the confusion which characterises the older systems, based, as they all were, more or less, on artificial characters, derived from the various conditions of the shcll, or from modifications of the dermal system; and the confusion was increased by the introduction among the Cephalopods of numerous microscopic chambered shells, to which M. d'Orbigny gave the name Foraminifera, but which the recent investigations of Dujardin show to have been constructed by an inferior class of animals, belonging or allied to the Zoophyta, and which he has named Rhizopoda. It would be foreign to the purpose to enter here into any history or comparison of the different systems of arrangement which have becn proposed. In the eleventh volume of Lamarck's 'Histoire Naturelle des animaux sans vertèbres,' edited by MM. Deshayes and Milne Edwards the reader

[^30]will find a most comprehensive and able review of the progress of this branch of natural history.

The principle of classification adopted by Cuvier removed many of the difficulties and inconsistencies which had previously prevailed; but it was still based, to a great extent, on external characters. Attempts at arrangements, founded on higher characters, were madc by different authors; but the imperfect knowledge which existed of the anatomy of the animals, prevented the cstablishment of a system in which due regard could be paid to affinities indicated by internal organization. Of latc years, however, considerable additions have becn made to our knowledge of the anatomy of these animals; and in 1830, the arrival in this country of a specimen of the pearly Nautilus, caught off the coast of one of the New Hebrides, enabled Professor Owen to examine the internal structure of that animal, an opportunity which had not occurred to naturalists since the time of Rumphius. The anatomy of various other Cephalopods was also investigated by Professor Owen; and the additional information thus obtained, led that gentleman, in 1836, to propose a system of classification which, although at variance in many respects with all prcvious arrangements, was at once received as one founded, in its general principles, on well-dcfined and natural characters; and this system, accordingly, forms the basis of the more recent classifications.*

All the Cephalopods the anatomy of which had been examined previously to the arrival of the pearly Nautilus, respired by the agency of two branchiæ or gills, and possessed three hearts, a systemic heart, and two lateral hearts; they werc also endowed with eight arms furnished with suckers, some gencra having also two elongated tentacula or additional arms. The pearly Nautilus, however, was found to be possessed of four branchiæ, and of only one heart; and, instead of arms, the mouth of the animal was surrounded by numerous short tentacula. Availing himself of these natural and well-defined characters, Professor Owen divided the Cephalopoda into two ordcrs: 1st, Dibranchiata, comprising those furnished with two gills; and 2d, Tetrabranchiata, comprising those furnished with four gills. The Dibranchiata were subdivided into two sub-orders or tribes, according to the number and condition of their locomotive organs ; the first tribe (Octopoda) consisting of the Ccphalopods with eight arms, having the suckers simple, and the branchial chamber divided by a diaphragm; the second tribe (Decapoda) consisting of those Cephalopods possessed

* Up to this time Spirula, as well as Belemnites, had been classed with Nautilus, and the other Cephalopods which now form the tetrabranchiate order (Ceph. test. polythalamaces of Lam.; Siphoniferes of D'Orb.) Of the anatomy of the animal nothing was known; but the presence of an ink-bag, and the acetabuliferous character of the arms had been shown by Lamarck and Peron; and from this fact Professor Owen, aided by that knowledge of the laws of correlation which imparts such value to all his observations, infcrred that the animal must present the dibranchiate type of structure. The accuracy of this deduction is now fully established.
of eight arms, and two additional elongated tentacula. In this tribe the suckers are armed, and the mantle supports two lateral or terminal fins. The "Octopoda" were divided into two families, termed "Nuda" and "Testacea," according to the absence or presence of an external shell. In the second family was placed Bellerophon, an extinct genus proposed by De Montfort for remains peculiar to the Palæozoic series, which Defrance had associated with Argonaut, but which subsequently had been considered as belonging to a heteropodous mollusc. The reasons which induced Professor Owen to restorc Bellerophion to a place among the Cephalopods are not stated. If however, its remains belong to this class, they present the anomaly of the testaceous Octopods having been without a representative from the end of the carboniferous epoch until the deposit of the newer tertiary formations, when the family reappears in the genus Argonaut. The decapodous Cephalopods were divided into four families, according to the position of the fins, the nature of the internal shell, and the condition of the infundibular cartilage. The ordinal and sub-ordinal distinctions of Professor Owen have been adopted by M. Deshayes, but that naturalist has subdivided the Octopoda and Decapoda each into two groups; the Octopoda according to their possessing one or two rows of suckers, and the Decapoda according to the position of the fins. These characters appcar to be of secondary importance, and, by themselves, can scarcely be considered as sufficient for more than generic distinctions. M. d'Orbigny has availed himself of the presence of suckers and tentacles, characters originally proposed by himself and M. Ferussac as ordinal distinctions, and accordingly the Cephalopoda are divided by him into Aectabulifera and Tentaculifera. The subordinal distinctions of Professor Owen are adopted by this author ; but in his subdivision of Octopoda he has drawn his characters from the presence or absence of the apparatus for resistance, and the aquiferous pores. The Decapoda are arranged by him in two groups, according to the modification in the structure of their eyes, to which \mathbb{I} have before alluded. The first group (Myopside) is divided into three families. In two of these, Sepida and Loligida, the characters are taken from the retractile power of the tentacular arms, the condition of the internal shell, and the presence or absence of an eyelid of a part of the auditory apparatus called by him the auricular crests (crêtes auriculaircs), and of a superior ligament to the funnel; the character of the third family (Spirulida) rests entirely on the internal shell. The second group (Oigopside) also consists of threc families, two of which, Loligopsida and Teuthida, depend on the presence or absence of a lachrymal sinus and the auricular crests, on the funnel being or not being provided with an interual valve and ligaments, on the condition of the aquifcrous pores, and on the shell being with or without air-chambers. The Belemnitida, the third family, is separated entirely by the character of the internal shell.

The peculiar modifications in the structure of the eyes among the decapodous Cephalopods appear to be of sufficient importance to justify the subdivision of that sub-order into the two groups proposed by M. d'Orbigny ; and inasmuch as the adoption
of that division involves the distribution of the gencra forming Professor Owen's extensive family Teutlida between the two groups, and the eharacters on whieh M. d'Orbigny has formed his families are at the least of cqual importance with those used by Professor Owen, I have adopted the elassifieation proposed by M. d'Orbigny, but with the following modification. That author has plaeed Beloptera and Spirulirostra among the Spirulida. Now the shells of these gencra present a series of siphonated air-chambers associated with a rostrum, and thercfore bear a much closer affinity with Belemite than with the shell of the reeent Spirula. I have, therefore, placed them, as well as Belemnosis, among the Belemitida; and as I agrec with Voltz in eonsidering Belosepia to have possessed a camerated and siphoniferous shcll, I have also plaeed that genus in the same family, notwithstanding the close affinity between its remains and the internal shell of the recent Sepia.

Order-DIbranchiata. Sub-order-DECAPODA.

Tribe-Orgopside.
 1st Family-Belemnitide.

The Belemnitide, the sixth family in the classification proposed by M. d'Orbigny, consist, according to that author, of the genera in which the animal was provided with an internal horny or calcareous shell, having at the posterior part air-chambers superimposed in a ncarly straight line in the form of a cone, and pierced on the ventral part by a marginal syphon. The family is confined, according to that author, to the three extinct genera, Conoteuthis, Belemnitella, and Belemnites.

The two latter genera, however, do not appear to fall strictly within the terms of the definition; for the posterior parts of their shells consist, as is well known, of a spathose guard, frequently of considerable size, the anterior extremity of which is produced so as to form an alveolus for the reception of the phragmocone. If, as the fact is, the genus Belemnites forms the typical genus of the Belemnitida, it would surely be proper that those genera which, like the type, possess camerated siphoniferous shells, terminated posteriorily by a calcareous guard, should, at all events, be included in the family. It is difficult therefore to conceive on what sound principle Spirulirostia and Beloptera, but more particularly the last genus, whose calcareous remains present so striking a resemblance to those of Belemnites, instead of being placed in this family, have been associated with Spirula, with whose spiral discoidal shell they present so little analogy.

It appears to be desirable that, for the present at least, the Bclemnitidæ should be extended so as to comprise all the genera in which the animal possessed an internal horny or calcareous shell, with or without a terminal guard, but containing airchambers pierced by a ventral siphuncle; whether those chambers were superimposed in a nearly straight line in the form of a cone, or in a spiral or subspiral line. As thus enlarged, the Belemnitidæ will consist of the following genera: Belosepia, Beloptera, Belemnosis, Spirulirostra, Conoteuthis, Belcmnoteuthis, Belemnitella, and Belemnitcs.

Hercafter it may be desirable to form a division for the rcception of genera in which, as in Conoteuthis, the apex of the sheath is simple.

All attempts at a linear arrangement are absolutcly futile; but it will bc seen that in this, as in every case where several genera are grouped together, the family presents aberrant forms leading to other groups; thus Beloptera, Belemnosis, and Belosepia, leading to Sepida; Belosepia and Spirulirostra to Spirulida; and Conoteuthis to Teuthida.

Genus 1st. Belosepia.* Voltz, 1830.
Sepia. Cuvier; Férussac; dOrbigny; Deshayes. Belosepia. Bronn.

Animal unknown; but, from the affinities between its ealeareous remains and the internal shell of the reeent Sepia, supposed to have more nearly resembled that genus than any other existing Cephalopod, and may be thus deseribed:

Body oblong, (?) naked, supporting two lateral fins extending its whole length; mouth terminal, furnished with two corneous mandibles, and surrounded by ten prehensile aeetabuliferous arms, of whieh two were longer than the others; mantle free at the anterior margin ; branelica two.

Shell internal, oblong, semieonical, coarsely granulated or suleated on the extcrior, internally smooth, containing a series of transverse laminæ, perforated near their ventral margins by large elliptical, sub-siphoniform openings, and terminating in a solid beak or rostrum, inflected towards the dorsal aspeet, and expanded at the anterior extremity on the dorsal aspeet into an clevated eallus, and on the ventral aspeet into a semicireular plate bent outwards over the base of the rostrum ; the ventral margins of the laminæ eonverging towards the anterior extremity of the rostrum, and conneeted by a thin ealeareous plate.

Testá internâ, oblongâ, semiconicâ, externè gramlata, internè lavigatá: septa transversa, foraminibus ventralibus ellipticis subsiphonoidis perforata, continenti, et rostro solido, anticè, parte dorsali in eallum proeminentem, parte ventrali in laminam supra rostrum reflexam thilatato, posticè sursum iuflexo, terminatá; septormm marginibus ventratibus ad basim rostri convergentibus et tenui laminá connexis.

The remains of this extinet Cephalopod have been long known as of frequent occurrenee in the Paris basin; they were notieed by Guettard \dagger and were deseribed by him as the fossil teeth of sharks. They were also figured by Burtin, \ddagger and by him were considered to be internal bones of a fish's head. To Cuvier palæontology is indebted for pointing out their true charaeter. In a short notice published in 1824, in the 'Annales des Scienees Naturelles,' that illustrious naturalist referred the remains in question to a eephalopodous mollusc closely allied to the recent Sepia; and, in faet, they, as well as the remains of another extinet Cephalopod whieh exhibited an unquestionably eamerated and siphoniferous strueture, and for the reception of whieh the genus Beloplera had been established by M. Deshayes, were placed by M. d'Orbigny in that genus. M. de Blainville also in the first instanec described them as the remains of a Sepia; but afterwards, when he adopted the genus Beloptera for the Sepia

* Etym. Bedos, telum ; $\Sigma_{\eta \pi i a}$, sepia.
† Mémoires sur différentes parties des Seiences et Arts, 1783, Septième Mémoire, pl. 2, figs. 29-30.
\ddagger Oryctyographie de Bruxelles (1784), pl. 2, fig. A.

Parisiensis, he confounded with it the remains in question. M. Voltz was the first to examine these remains with the attention they deserve. This author instituted a comparison between the shell of the Beloptera Belemnitoidea, that of the Beloptera Sepioidea (Sepia Parisiensis), and the recent Sepion, and stated the reasons which induced him to consider the Beloptera Sepioidea as belonging to a distinct genus, equally removed from the Beloptera Belemnitoidea and the recent Sepia, and as forming a natural connexion between Belemnites and Sepia; and he proposed the present genus, Belosepia, for its reception. The principal ground advanced by him to justify this scparation was, that the remains of Belosepia indicated a camerated and siphoniferous structure in the contents of the sheath, widely different from that of the Sepion ; and, if this opinion be correct, there cannot be a doubt as to the propriety of the separation. M. Deshayes, however, in his 'Description des Coquilles fossiles des Environs de Paris,' without questioning in any respect the accuracy of M. Voltz's description, without referring even to that author's opinion as to the siphoniferous structure of the shell, but simply relying on the analogy drawn from the general resemblance between the remains of the Sepia Parisiensis and the Sepion, unhesitatingly rejected the genus Bcloscpia as not possessing character's sufficiently distinct from those of Sepia; although he considered that it would be desirable to form a section in the genus Sepia for the reception of the fossil species. In this opinion M. Deshayes has been followed by MM. Pictet and d'Orbigny. I cannot concur with these authors in the rejection of M. Voltz's genus. The Belosepion* appears to me to present peculiaritics of structure, indicating corresponding important zoological differences, which render it impossible to regard the animal to which it belonged as forming part of the existing genus Sepia.

The Belosepion, like the internal shell of the Sepia, is a compound shell, and consists of-lst, a solid calcareous mucro, or rostrum, commonly called the beak, inflected at the posterior extremity towards the dorsal aspect, and at the base cxpanding on the dorsal aspect into an elevated, compressed, and more or less rugose mass, called by M. Deshayes the callus, and on the ventral aspect into a thick semicircular plate, bent outwards, in a radiated fold, over, but not touching, the upper portion of the rostrum, denticulated on the margin, and continued latcrally into the parietes of the sheath.

2d. An inverted semiconical calcareous plate, termed the sheath, externally coarsely granulated, internally smooth, but presenting a series of undulating impressions, converging towards the inverted apex, where the sheath terminates in a conical cavity, formed in the anterior portion of the rostrum, and strongly inflected towards the ventral aspect, so that the posterior extremity presses against the origin of the radiated fold.

[^31]3d. A thin caleareous layer, eovering the whole of the inner surface and the terminal cavity of the sheath; and

4th. A series of thin laminæ or septa imposed one upon another, at first nearly vertieally, but assuming gradually a horizontal direction, owing to the convergenee, towards the origin of the radiated fold, of their ventral margins, whieh are nearly straight, and eonnected by a ealeareous plate, forming the ventral surface of the sheath.

The undulating impressions whieh appear within the sheath are strongly defined on the dorsal aspect, but become faint as they approaeh the ventral surface. M. Voltz has deseribed these undulations as impressions of the sutures of the alveolus; * while, on the other hand, M. d'Orbigny considers them to be lines of growth, and not marks of the chambers, which, he says, in fact only oceupied one half of the cavity. They are, however, strictly analogous with the similar impressions found in the Sepion, and are formed by the margins of the laminæ or septa. Being formed in suceession as the new laminæ are added, it is true that in that way they represent the progressive increase of the shell; but they are not true lines of growth.

The extreme fragility of the lamine has not allowed of their preservation; but their remains oecur, not unfrequently, towards the posterior extremity of the sheath, consisting of fine clevated lines, which traverse the whole circumference of the cavity, and are, in fact, the dorsal and lateral margins of the lamine adhering to the inner sheath. These lines are continued over the ealcareous plate, which eonneets the ventral margins of the laminæ; and it is evident, therefore, that the laminæ extended across the whole of the transverse area of the sheath.

The ventral margins are always eonvergent towards the origin of the radiated fold; and, eonsequently, the laminæ within the terminal eavity slant in a direetion opposite to that of the laminæ within the sheath, inasmuch as that the eavity extends wholly below the origin of the fold. Owing to this, the arrangement of the ehambers formed by the septa somewhat resembles that of the air-ehambers in Spirulirostra, except that in the latter shell the plane of the scpta is always at right angles with the axis; while in the Belosepion it is at angle more or less aeute as the septa approaeh to, or reeede from, the point of convergence. In the eavity itself, the dorsal margins of the lamine are distant; but as they approach that part of the sheath which is immediately under the point of eonvergence, they are placed more elosely to eaeh other, and they again become distant as the laminæ emerge from the eavity. Owing to the convergenee of their ventral margins, the laminæ, which as they cmerge are nearly vertical, take a direction gradually more and more slanting towards the anterior extremity of the rostrum, until, on the shell attaining its full growth, they assume a position nearly

[^32]horizontal. This arrangement of the laminæ is well displayed in fig. 1h, Tab. I, drawn from a specimen found at Sheppy, for the use of which I am indebted to Mr. Dixon, to whom it belongs. The ventral margins of the laminæ cxtend quite across the connecting plate before mentioned; and on each side, at a short distance from the extremitics, they expand into the lateral portions of the laminæ, small projecting fragments of which are sometimes still found adhering to the sides of the sheath. It is evident from this that the opinion expressed by M. Voltz, that there existed in each of the laminæ an opening placed near the ventral margin, is correct. Thesc openings appear to have been of an elliptical form, with their shorter axes in a line from the ventral to the dorsal surface, and were lined with an extremely thin calcarcous sheath, which extcnded throughout the whole serics of the lamine, and of which portions are frequently found adhering to the inner edges of the ventral margins and the latcral fragments of the laminæ. This sheath corresponds with the siphon of the Belemnites, and is represented in the Sepion by the calcareous layer which, extending over the posterior edges of the laminæ, covers the entire surface of the last lamina, and it presents, as M. Voltz states, an intermediatc form between the narrow, straight siphon of the Belemnites and the widc, open cavity of the Sepion.

Whether the spaces between the laminæ were filled with minute columnar partitions, similar to those which characterise the Sepion, or whether they were simple airchambers, we have not at present any evidence to detcrminc. The probability is, that they were simply air-chambers; for no trace whatever of any substance similar to that termed the spongioid tissuc of the Scpion has been found, which, had any such substance existed, might reasonably have becn expected; and the true siphonal structure, to which the Belosepion presents so close an approximation, is always associated with simple air-chambers. The Belosepion, as its rostrum indicates, belonged to a Cephalopod eminently littoral in its habits, and the size, notwithstanding the extraordinary development of the rostrum, lcads us to bclieve that the animal was not only smaller, but a less powerful swimmer, than the recent Sepia. We should expect, thercfore, to find in it some provision for buoyancy beyond that with which the recent Sepia is furnished, not only for the purpose of increasing the swimming power of the animal, but also as a compensation for the large and densc rostrum and callus which characterise its remains. But if the interlaminar spaces were filled with any substance resembling the spongioid tissue of the Scpion, the floating apparatus of the Bclosepion would be apparently inadequate to the wants of the animal. The form and mode of superposition of the laminæ, somewhat rescmbling the arrangement of the septa in Spirulirostra, present a closer analogy with.the phragmocone of the Belemnites than with the plates of the Sepion. These considerations give additional weight to the opinion of M. Voltz, founded on the appearance of what he terms the "alveolar suturcs," that the Beloscpion was a camerated and siphoniferous shcll.

The rostrum of the Belosepion presents a structure analogous with that of the
spathose guard of the Belemnite. It has a tendency to split in two along the centre, in a vertical plane, from the ventral to the dorsal aspect; and it is composed of successive conical layers, each enveloping the preceding layer, and exhibiting a fibrous texture crosswise. The anterior lateral and dorsal portions present straight plates, longitudinally fibrous, resembling the structure of the Beloptera Belemnitoidea, and the external edges hang over cach other, and give an imbricated appearance to that part of the rostrum.

In order to appreciate the differences which appear to render it desirable that the genus Belosepia should be retained, it may be well to give a short description of the internal shell of the recent Sepia officinalis. This will be found to consist of five distinct parts: lst, an outer layer of calcareous matter, called the buckler or sheath, convex, rugose externally, and prolonged at the posterior extremity into a calcareous spine, placed in the medial line, and inflected towards the ventral aspect; 2 d , a series of horny layers imposed one over another, extending over the posterior dorsal surface of the buckler, and wholly envcloping and extending beyond the spine; 3d, a thin horny layer spread over the whole of the internal surface, and extending beyond the edges of the buckler, and which, in its turn, is entirely covered by, 4th, a calcareous layer, which contains the spongioid tissue and, 5th, a series of convex horny laninæ, impregnated with carbonate of lime, placed horizontally, the posterior edge of each succeeding lamina being a little withdrawn from that of the preceding lamina, so that by this mode of superposition they present a depression or cavity immediately above the origin of the spine, and gradually rise into a convex mass at the middle and upper extremity of the shell. The spaces betwcen the lamine act as air-chambers, but there is not any siphuncle or siphonal opening ; and the surfaces of the laminæ are studded with an infinite number of minute columnar and sinuous partitions, placed at right angles to the laminæ, and giving them support.

It will be seen from this that the Belosepion, although bearing a close general resemblance to the Scpion, still presents scveral strongly-defined differences. The elevated calcareous mass or callus, which, in the Belosepion, terminates the sheath on the dorsal aspect, attaining frequently a considerable size, is not found in the Sepion ; and the fold, which in the latter is represented by a series of horny layers, distinct from, but wholly enveloping, the spine, is, in the former, a thick calcareous plate, formed by the expansion and retroflection of the anterior extremity of the rostrum, and extending barely beyond the line of the callus. In the Sepion the rostrum is small, in some species little more than rudimentary, and inflected, if at all, towards the ventral aspect. In the Belosepion, on the contrary, it attains a very large size, and, as M. Pictet observes, would indicate a gigantic animal if it were in relation to the animal in the same proportion as the Sepion; and it is invariably inflected towards the dorsal aspect. The internal laminæ of the Sepion are horizontal, equidistant, and parallel, and so arranged as to form a hollow at the posterior ventral portion of the sheath, but rising
into an elevated mass towards the middle; while in Belosepion, after emerging from the terminal cavity, in which they radiate, as it were, from the origin of the fold, they are at first nearly vertical, with the edges of the ventral margins ranged in a line with the ventral surface of the rostrum, and converging towards the inverted apex of the sheath ; so that, as the sheath enlarges, the dorsal edges of the laminæ become more and more distant, and the laminæ themselves tend gradually towards a horizontal position ; and in fact, in an adult individual, the last laminæ become nearly horizontal.

Owing to the different mode of arrangement of the laminæ, the Sepion and Belosepion differ materially in their shape and general aspect. In each the dorsal plate or sheath is extended so as to embrace the laminæ; but in the Sepion, the laminæ of which are horizontal, and placed in a direction nearly parallel with the sheath, it is necessarily mueh less convex and more extended than in the Belosepion, in which the lamine, being vertieal, or more or less vertieally inclined, present to it merely their dorsal and lateral margins. The buekler of the Sepion, and its contents, are, therefore, in form an elongated oval, depressed in the direetion from the ventral to the dorsal aspect, and but slightly convex on the surfaces; while in the Belosepion the sheath is considerably shorter, enlarging gradually towards the anterior extremity, and presents a deep semiconical cavity, eontaining within it the whole area of the laminæ, and it is obliquely truneated at the anterior extremity, and flat on the ventral surface, whieh does not extend to half the length of the shell. The most important difference, however, is, that the laminæ of the Belosepion possess large ventral, siphonal, or siphoniform openings, a structure which is not found nor represented in the Sepion.

These distinctions indieate corresponding zoological peeuliarities; and the animal, although, perhaps, resembling Sepia more closely than any other reeent Cephalopod, must yet have presented sueh marked differences from it as to render it impossible satisfactorily to refer its remains to that genus, and fully to justify the separation proposed by M. Voltz. I have, therefore, retained that author's genus, Belosepia, notwithstanding the array of authorities against it; and I have the less hesitation in doing this, when I find that Cuvier did not refer the remains in question to Sepia, but to some Cephalopod elosely allied to that genus; and that M. de Blainville, when he adopted the genus Beloptera, did not hesitate to remove them from the genus Sepia, to which he had referred them, although he placed them, under some misapprehension, in the genus Beloptera.

With respeet to the place of Belosepia in the systematie arrangement, as the shell presents a camerated and siphoniform structure and a terminal guard, and is therefore more nearly related to Belemnite than the recent Sepia, I have removed it from the family Sepida, in which M. d'Orbigny has plaeed it, to the family Belemnitidæ. It seems to have prepared the way for the recent Sepia, and leads from that genus, by a natural and easy transition through Beloptera and Belemnosis, into Belemnitella and Belemnite.

The specific characters are taken from the rostrum, the callus, and the fold. These parts, however, are of secondary importance only, and would vary in form considerably, not only with the age, but probably with the sex of the animal. Distinctions founded upon them, thercfore, must necessarily be somewhat vague and uncertain; and, in fact, M. Deshayes, from not attaching sufficient importance to changes resulting from age or other circumstances, has proposed three distinct species, viz. Belosepia longispina, B. longirostris, and B. Blainvillii, on remains which, as well as those of the B. Cuvieri (of Deshayes), M. d'Orbigny considers to be varieties of the same species attributable to age.

Four well-defined species are known at present, viz. lst, B. sepioidea (De Blainv.), consisting of S. longispina, S. longirostris, and S. Blainvillii (Desh.) ; 2d, B. compressa (De Blainv.) ; 3d, B. Cuvieri (Desh.), which I consider to be the B. Owenii of Sowerby ; and 4th, B. brevispina (Sowerby). With the exception of the B. compressa, which has not yet been found in England, they all occur in the eocene strata of this country. The first three species are found in the Paris basin, and the B. Cuvicri has also been found in the tertiary deposits of Belgium.

No. 1. Belosepla sepioidea. De Blainv. Tab. I, fig. 1 a-i.
Beloptera septotDea; De Blainv. 1825. Mal. add. et correct. p. 621, tab. 11, fig. 7. Sepia Cuvieri ; D'Orl. 1825. Tab. Méth. de la Classe Ceph. p. 67.
Beloptera sepioldea; De Blainv. 1827. Mém. sur les Bélcm. p. 110 , tab. 1, fig. 2, $2 a, 2 b$. - - Sowcrly. 1829. Min. Con. vol. vi, p. 183, tab. 591, fig. 1.

Belosepia Cuvieri ; Voltiz. 1830. Obs. sur les Bélem. p. 22, tab. 2, fig. 6a-g.
Septa Cuvieri ; Galeotti. 1837. Mém. sur la Constit. Géogn. de la Prov. de Brabant, p. 140.

- Loxgispina; Desh. 1837. Foss. des Env. de Paris, p. 757, tab. 101, fig. 4-6.
- longirostris;,\quad, p. 758, tab. 101, fig. 10-12.
- Blainvilit ; , ", \quad, \quad fig. 13-15.
- Cuvieri ; Bromn. 1837. Lethæa Geognostica, p. 1127, tab. 42, fig. 19 a-c.

Beloptera longirostrum ; Morris. 1843. Cat. of Brit. Foss. p. 178.
Sepia longirostris ; Pictet. 1845. Traité élém. de Palćont. vol. ii, p. 315.

- Longispina;
— Blainvillit; ," ", "
- sepiotdea; D’Orb. 1845-7. Moll. viv. et fos. vol. i, p. 269.

Belosepia Cuvieri ; J. D. C. Sowerby. 1849. Dixon's Gcol. Hist. of Bracklesham, Selsey, and Bognor, \&c., p. 109, tab. 9, fig. $11 a$.

-	longirostris ;	"	"	p. 109 , tab. 9 , fig. 15.
-	longispina;	"	"	p. 109, tab. 9, fig. 12.
-	Blainvilili ;	"	"	p. 109, tab. 9, figs. 16, 17.

Non Sepia Cuvieri ; Desh. Foss. des Env. de Paris, p. 758, tab. 101, figs. 7-9.
B. rostro elongato, crasso, acuto, recto aut plus minusve arcuato; laminá ventrali crassù, profundè radiatim sulcatí, in margine posteriori denticulatâ; callo dorsali profundè et irregulariter rogoso, deorsum producto aut erecto.

This species presents considcrable variations in the form, as well of the callus as of the rostrum ; and, in fact, M. Deshayes has separated it into the three species B. longispina, B. longirostris, and B. Blainvillii, chiefly on account of the different conditions of the rostrum. M. d'Orbigny, attributing the variableness of the rostrum to the age of the animal, or to alterations caused by fossilization, to which I would also add changes resulting from attrition, has united these species under the specific name B. sepioidea, originally given by De Blainville. Possessing a long series of specimens, comprising individuals in different stages of growth, and in which the peculiarities of form, taken by M. Deshayes as specific characters, appcar to pass gradually into each other, I have no doubt as to the propriety of the union, proposed by M. d'Orbigny, of the three species above mentioned. That author, however, has added to them a fourth species, proposed by M. Deshayes, B. Cuvieri; but which, as it cxhibits constant and well-defined differences, I think should be retained.

The rostrum of B. sepioidea is elongated, and pointed at its posterior extremity; on the inferior or ventral surface it is sometimes, particularly when young, nearly straight, but more frequently it is bent, at about half the length, in an angle more or less obtuse, towards the dorsal aspect; the dorsal surface presents a sharp cutting edge, slightly arched, and, at its juncture with the callus, exhibits a depression, which is strongly marked in mature specimens. At the base, immediately beneath the callus, it is more or less dilated, and it is angulated at the margins; the ventral surface is more or less convex. The callus is narrow, compressed, and decply rugose; the posterior margin forms an acute angle with the axis of the rostrum, varying considerably in different specimens. In some instances the inclination of the posterior margin is at an angle more or less obtuse with the axis of the rostrum ; a condition which, as it appears to me, is attributable to the fracture and attrition of the extremity of the callus, as the specimens in which this form occurs present a smooth worn appearance. The ventral plate, immediately beneath the rostrum, is nearly horizontal, but presents a broad undulation, corresponding with the convexity of the ventral surface of the rostrum ; the lateral extremities, as they approach the sheath, gradually diminish in breadth, and assume a nearly vertical position. In consequence of this variation in breadth, the ventral plate, which, at the superior margin, is nearly semicircular, presents a rcgular semielliptical form on the posterior margin. It exhibits on the ventral surface a series of sulci, radiating from the apex of the terminal cavity, and varying in depth; and it is deeply and sharply denticulated on the posterior margin. As the shell enlarges, the plate is thickened considerably by successive layers added to the ventral surface. The last layers frequently do not envelope, but are a little withdrawn from the margin of, the preceding layers, leaving the previous denticulations partly uncovered; and consequently the margin of the ventral plate, in an adult specimen, often presents a double row of denticulations.

The lateral portions of the sheath exhibit deep vaseular impressions at the posterior extremity.

The B. sepioidea is found plentifully at Braeklesham Bay, on the eoast of Sussex; it is also found at Stubbington (near Gosport) and at Sheppy. In Franee it oeeurs, aecording to M. d'Orbigny, in the lower ealeaire grossier at Chaumont (en bas), Vivray, and Saint Germain ; in the upper ealcaire grossier at Chaumont (en haut), Grignon, Courtagnon, Parnes, Muchi-le-Châtel, \&c., and, in the sandy beds above the ealeaires grossiers, at Tancrou, Aumont, Acy, \&e.

The speeimen (Pl. l, fig. 1/) exhibits nearly the entire form of the shell; it was found at Sheppy, and enriehes the eabinet of Mr. Dixon. The length is four inehes, and the breadth aeross the superior extremity of the sheath, if the east were perfect, would be rather more than an ineh. The remains commonly found seldom consist of more than the rostrum, with, oecasionally, portions of the ventral plate, and, more rarely, of the posterior extremity of the sheath. The ordinary size of the rostrum is six tenths of an ineh* long, and three tenths wide at the superior extremity.

No. 2. Belosepia Cuvieri. Deshayes. Tab. I, fig. $3 a-c$. Sepia Cuviert ; Desh. 1837. Foss. des Env. de Paris, p. 758, tab. 101, fig. 7-9.

- - Nyst. 1843. Descr. des Coq. et des Polyp. des Terr. tert. de la Belg. p. 610, tab. 46, fig. 1.
- - Pictet. 1845. Traité élém. de Paléont. vol, ii, p. 315.
- sepioidea (sp.) ; D'Orb. 1845-7. Moll. viv. et fos. vol. i, p. 269.

Beloseria Owent ; J. D. C. Sowerby. 1849. Dixon's Geol. Hist. \&e. p. 109, tab. 9, fig. 13a.
Nec Sepia Cuvieri; D’Orb. 1825. Tab. Méth. de la Classe Ceph. p. 67.
Nec Belosepia Cuvieri ; Voltz. 1830. Obs. sur les Bélemn. p. 22, tab. 2, fig. 6a-g.
Nec Sepia Cuvieri; Sow. Min. Con. vol. vi, p. 183, tab. 591, fig. 1.
Nee Belosepia Cuvieri ; J. D. C. Sow. 1849. Dixon’s Geol. Hist. Se. p. 109, tab. 9, fig. 11 a
B. Testî extremitate posticali lateraliter Iilatatâ; rostro brevi, erasso, arenato, aento, ad basim latissimo: laminá ventrali arenala, profundè suleatâ, in margine dentieulatá; callo dorsali profundè rugoso, margine inferiori reeto aut sursum vergenti.
M. Deshayes, in his deseription of this speeies, refcrs to Bcloptcra sepioidea (Beloptère dc Cuvier) of De Blainville, and to the specimen figured by Mr. Sowerby in 'Mincral Conehology,' as identieal with it. The description given by M. de Blainville is rather sub-generic than spccifie, and is too general for the purpose of identity ; but the figures given by him are evidently those of a mutilated speeimen of

[^33]B. sepioidea, and do not eorrespond with the specifie deseription given by M. Deshayes. Through the kindness of Mr. Sowerby I have had an opportunity of cxamining the specimen from which his figure was taken, and it is unquestionably a B. sepioidea; the peculiar form of the rostrum being eaused by the fraeture of the posterior extremity, and the abrasion of the lower part of the outer layers. The present species is well defined by M. Deshayes; and as I have a series of specimens in different stages of growth in whieh the distinctions are prescrved, I do not hesitate to retain it.

The rostrum is short, thiek, slightly arched, and very broad at the supcrior cxtremity ; on the dorsal surface, at the posterior cxtremity, it is compressed, and presents a cutting edge for about one half of the length; the superior extremity is marked by a. broad depression extending to the callus. The ventral plate is less elliptical, and the dentieulations less prominent, than in B. sepioidea. The eallus is nearly perpendicular to the axis of the rostrum, and enlarges rapidly, owing to the greater width of the terminal cavity.

The specimen figured in Mr. Dixon's work, under the name B. Owenii, appears to belong to this species. Mr. Sowerby was probably induced, by the synonyms quoted by M. Deshayes, to eonsider the Sepia Cuoieri of that author as identical with the Beloptère de Cavier of De Blainville; and as the specimen before him could not be referred to that speeies, he proposed the species B. Owenii for its reeeption. The speeifie name Cuvieri, however, having been improperly used by MM. d'Orbigny and Voltz for the B. sepioidea of De Blainville, must now be retained for the present speeies, to which it was applied by M. Deshayes, and it will consequently supersedc the name Owenii proposed by Mr. Sowerby. M. Nyst eites for his speeimens M. Deshayes's description of B. Cwieri, and has, in fact, copied the figures given by that author. I have therefore eonsidcred them as identical.

Hitherto, I believe, B. Cuvieri has been found, in England, only at Braeklesham Bay, where it is not by any means common. The Freneh localities quoted by M. Deshayes are Grignon, Courtagnon, Parnes (upper cal. gross.). M. Nyst gives the sandy beds at Boitsfort, Assche, Jette, Forêt, Ucele, and Ghent, as the Belgian loealities.

The length of the rostrum is 3 inch, and its breadth at the superior extremity $\cdot 3$ ineh.

No. 3. Belosepia brevispina. Sowerby. Tab. 1, fig. $2 a-e$. Belosepia brevispina; J. D. C. Sowerby. 1849. Dixon's Geol. Hist., \&c., p. 109, tab. 9, fig. 14.
B. rostro per-brevi, erasso, aeuto, in aspectum ventralem valde convexo et regulariter arcuato; laminá ventrali profundè suleatâ, vix dentieulatá; callo dorsali in margine inferiori compresso, sursum vergenti.

A species much resembling the young of B. Cwieri; but, according to the few specimens we possess at present, it is distinguishable by the shortness and the greater convexity of the infcrior surface of the rostrum, and also by the dorsal surface, which is rounder than in B. Cuvieri, slants downwards, and, even in the largest spccimens, barely presents the cutting edge which distinguishes the two preceding species. The callus is longer in proportion, and is so much compressed, as to present a narrow, almost a sharp edge; and it cnlarges more rapidly than even in the last species, owing to the greater width of the tcrminal cavity.

The ventral plate is semicircular, and nearly smooth on the inferior margin, and, owing to the width of the cavity, is transverscly elliptical on the superior margin ; it is also narrower and more deeply sulcated than in B. Cavieri.

The B. brevispina is found at Bracklesham Bay, and is very rare. I possess four specimens of diffcrent sizcs, which all present the same charactcristic form ; but it is not improbable that a larger series would show that the species is but the young form, or at all events only a variety, of B. Cavieri.

The length of the rostrum is 2 inch; the width rather less than $\cdot 2$ inch.

Gems 2d. Beloptera. Deshayes.**

Animal unknown, but supposed to have bcen closcly allied to the Bclemnitc, which, as described by Professor Owen, appears to have been oblong; the head, surrounded by ten arms, (!) \dagger furnished, like those of the recent genus Onyehotenthis, with a double alternate series of slender, clongated, horny hooks; mandibles horny; (?) the body pursc-shaped, conical, elongated, supporting near the middle two lateral fins, rounded and cntire along their free margin ; inclosing an ink-bag.

Shell internal, composed of two concs placed apex to apex, united, and cxpanding on each side into wing-shaped appendages, obliquely inclined towards the ventral aspect; the antcrior cone smooth, longitudinally fibrous, hollowed into a decp conical cavity, containing regular transversc concave septa, picrced by a ventral siphon.
B. Testâ internâ, duobns conis, apice ad apieem conjunctis, formatâ; utroqne latere duobus appendicibns aliformis, deorsum inetinatis, sustentâ; superfcie dorsali convexâ, ventrali coneavä; eono anteriori lavigato, longitudinaliter fibroso, cavitati conicá, profunda, septa transversa continenti, excavato; septis eoncavis, regularibus, siphone ventrali perforatis.

Guettard, the first author by whom thesc remains appear to have becn noticed,

* Etym. Be $\begin{gathered}\text { os, telum ; } \pi \tau \epsilon \rho o r, ~ a l a . ~\end{gathered}$
\dagger The eight sessile or normal arms only have as yet been found preserved. Professor Owen states that the traces of the superadded pair of tentacula are somewhat doubtful.
described them as the teeth of fish. Long subsequently, M. Deshayes examined similar remains found in the Paris basin; and, having observed in them characters which induced him to refer them to an extinct Cephalopod nearly allied to the Bclemnites, he proposed the present genus for their reception. M. de Blainville, whose 'Manuel de la Malacologie' was then in course of publication, and to whom M. Deshayes had communicated his proposed genus, confounded with the remains in question those of the so-called fossil Sepir (Belosepiæ); but in adopting the genus Beloptera, he divided it into two sections, the first containing the fossil Sepiæ, which he characterised as species laving wing-shaped appendages united at the superior extremity of the rostrum; the second section containing the true Belopteræ, he described as species having the appendages distinct and the cavity conical, and with chambers and a siphuncle. The mistake is continued by M. de Blainville, in the Supplement to his 'Mémoire sur les Bélemnites,' published in 1827. In 1830, Voltz pointed out the differences which rendered it necessary to keep the two genera distinct; and, about the same timc, M. Deshayes published, in the 'Encyclopédic Méthodique,' under the article Béloptère, the grounds which indueed him to establish that genus. Notwithstanding this publication, however, the crror into which M. de Blainville had fallen was repeatcd by MM. d'Orbigny and de Férussac, in their 'Histoire des Céphalopodes,' and by Cuvier, in his Memoir on the bones of the fossil Cuttle-fish, published in the 'Annales des Sciences Naturelles.'

Mr. Sowerby afterwards, when he adopted the genus provisionally for the curious and unique fossil obtained from Highgate, which he published in the 'Mineral Conchology' under the name Beloptera anomala, confincd the genus to those species which contained a chambered cone like the Belcmnites, and referred the species contained in M. de Blainville's first scetion to the genus Sepia. The absence, in the Highgate fossil, of the lateral wing-shaped cxpansions, and of the blunt terminal rostrum which characterise the two known species of Beloptera, as well as other characters to which I shall hereafter refer, scems to mc to require the establishment of a distinct genus for the reception of those remains; and the genus Beloptera will be then confined to those species which posscss lateral expansions, and which, as M. Deshayes himself describes them, exhibit an entire conical and chambered cavity, resembling that of the Belemnite, joined to a terminal rostrum, like that of the Belosepia.

As thus restricted, the Beloptere present, at the anterior extremity, a semiconical cavity, slightly depressed on the ventral aspect, in which was contained a thin calcareous layer, covering the entire inner surface. The inner cone formed by this layer contained a series of transverse, regular, and exccedingly thin septa, traces of which, consisting of their sutures or lines of junction with the inner sheath, are very distinct. These sutures, as they approach the ventral aspect, are slightly bent downwards towards the inverted apex of the cone, and present an acute sinus-like inflection
as they rise over a slight linear elevation, whieh traverses the whole length of the alveolus, along the medial line of the ventral inner surfaee, evidencing the presence and position of the siphuncle. The opening, or anterior extremity of the conical cavity, is slightly elliptical, having the shorter axis in the direetion from the ventral to the dorsal aspeet. The margin of the outer sheath is thin and sharp, and its ventral paries is mueh thieker than the dorsal paries, and rises into an elevated mass, depressed on the surface. The outer sheath itself is eomposed of a series of eoncentric layers, and exhibits a fibrous texture, like the sheath of the Belemnitc. The apex is prolonged into a dense calearcous mass, strongly infleeted towards the ventral aspect, and enlarged towards the posterior extremity, where it beeomes attenuated, and is obliquely truneated. This mass is eomposed of longitudinal laminæ, radiating from the apex of the eone, and so arranged, that the central laminæ are in a plane cxtending from the ventral surface to the baek, and the rest in planes gradually diverging more and more towards the back. The outer edges of the laminæ are distinct and slightly elevated, giving a rough suleated appearance to the surface. The cone and the ealearcous mass into which it is prolonged expand laterally into two smooth semielliptieal appendages, inclined obliquely towards the ventral aspeet, thin and sharp on the outcr edges, and gradually thickening as they approach their bases. These expansions consist of two distinct series of layers, deposited on the ventral and dorsal surfaces, and exhibit impressions which, as M. Deshayes remarks, are probably attributable to the presenee of a vaseular system in the substance of the mantle.

It will be seen from the foregoing deseription that Beloptera presents a much eloser analogy with the Belemnites than that exhibited by Belosepia. The open semiconieal eavity of the latter, in its typical form, nearly resembles the sheath of the Sepion; but the laminx, both in their mode of arrangement and in their large siphoniform openings, present the first indieations towards the phragmoconc of the Belemnite. In the aberrant form, Belosepia compressa, both the sheath and the laminæ reeede a step further from the Sepion type, and prepare the way for, and in fact conneet Belosepia with, Beloptera. In this genus a still nearer approaeh to Belemnite appears; the wide, open, but shallow sheath of the Sepion, with its siphonless and nearly parallel laminæ, is lost, and is replaced by an entire conical sheath, eontaining regular transverse septa perforated by a siphuncle, and exaetly corresponding with the sheath and phragmoeone of the Belemnite. The fold of the Belosepion, formed by the retroflexion and lateral enlargement of the ventral paries of the sheath, largely developed in the typieal form, disappears in Beloptera, and is represented by the lateral expansions which characterise that genus, and which, greatly redueed in size in Beloptera Levesquei, lead dircetly into the simple sheath of the Belemnite; while the strongly infleeted rostrum of the Bclosepion assumes the form of a somewhat eonical mass, and thus prepares the way for the elongated and regularly eonieal guard of Belemnite.

Exclusive of the Beloptera anomala (Sow.), for which I have proposed the genus Belemnosis, only two species of Beloptera are as yet known, i. e. B. Belemnitoidea, and B. Levesquei. Both species occur in the Paris basin, and in the Eocene beds of England. The first has also been found at Laeken in Belgium, and at Biaritz.

The specific characters are taken from the conditions of the lateral expansions and of the conical sheath.

No. 4. Beloptera Belemnitoidea. De Blainville. Tab. 2, fig. $1 a-g$.
Tooth of a fish ; (?) Guettard. 1783. Mém. sur les Glossopètres, tab. 2, figs. 10, 11, 12. Beloptera Belennitoidea; De Blaine. 1825. Mal. add. et corrcct. p. 621, tab. 11, fig. 8. Sepia Parisiensis; Fér. et D’ Orb. 1825. Tab. Méthod. des Céph., Ann. des Sc. Nat. vol. vii. Beloptera Belemintoidea; De Blainv. 1827. Mém. sứ les Bélemu. p. 111, tab. 1, figs. 3, $3 a, 3 b$.

-	-	J. D. C. Sowerby. 1829. Min. Con. vol. vi, p. 183, tab. 591 , fig. 3 .
Beloptera Belemnoidea; Voltz. 1830. Obs. sur les Bélemn. p. 20.		
Belopte	MNIT	Deshayes. 1830. Encyc. Méthod, vol. ii, p. 135.
-	-	Keferstein. 1834. Die Naturgeschichte der Erdkörpers, \&c. p. 430, No. 2.
-	-	Deshayes. 1837, Descrip. des Foss. des Env. de Paris, p. 761, tab. 100, figs. 4-6.
	-	Bronn. 1837. Lethæa Geog. p. 1129, tab. 42, fig. 18a-b.
-	-	Fér. et D'Orb. 1839. Céph. Acctab. Seiches, tab. 3, figs. 7-9; tab. 24, figs. 11-12.
-	-	Nyst. 1843. Descr. des Coq. et des Polyp. foss. \&c. p. 612, tab. 6, fig. 2.
-	-	Pictet. 1845. Traité élément. de Paléont. vol. ii, p. 316 ; tab. 14, fig. 2.
-	-	Deshayes. 1845-6. 2d Edit. de l'Histoire Nat. \&c. p. 243.
-	-	D' Orb. J845-7. Moll. viv. et foss. vol. i, p. 308, tab. 14, figs. 1-4.
-	-	J. D. C. Sowerby. 1849. Dixon's Geol. Hist. of Bracklesham, \&c. p. 109, tab. 9, fig. 18.

B. testâ ovato-elongatâ, longitudinaliter recurvä; supra convexä; subtus concavâ, depressá; cavitate anticá sub-eylindricâ: rostro obtuso, striato: appendicibus lateralibus magnis, semicireularibus.

Shell oblong, compressed; the sheath straight and ncarly clliptical; the ventral paries considerably thickened and depressed on the medial line below the siphuncle, so as to present an elevated sub-quadrate ridge, bifurcated at the posterior extremity. The rostrum enlarges gradually for about two thirds of the length, and then diminishes towards the extremity, which, in young specimens, is nearly conical in form, but in adult ones becomes very obtuse, probably from attrition; it is inflected towards the ventral aspect whence the shell presents longitudinally a somewhat arched appearance. The
lateral expansions are inclined towards the ventral aspect, and give a convex form to the dorsal surface, and a corresponding concavity to the ventral surface; they are thick at the juncture of the rostrum and sheath, and become gradually thinner as they enlarge, presenting a sharp eutting edge on their free outward margins. In this, the typical species, they are largely developed, regular in form, and vary considerably in size according to the age of the individual ; in young specimens they present an elongated semielliptical form, which, as the shell advances towards maturity, becomes nearly semicircular.

Figs. $1 f$ and $l g$ represent a variety in which the inferior cone is shorter, broader, and more compressed, and the wings are wider than in the ordinary specimens.

The B. Belemnitoidea is found in England at Bracklesham Bay, where it is somewhat rare. In France it is found in the nummulitic bed at Biaritz, in the Lower Pyrences; the lower beds of the calcaire grossier at Vivrais, Grypscuil, and Pouchon (Oise), and, in the middle beds, at Grignon, Parnes, Muchi-le-Châtel, Chaumont, \&e. It also oceurs in Belgium, in the sandy beds at Laeken.

The size is eleven lines in length, and four lines and a half in width across the widest part of the lateral expansions.

No. 5. Beloptera Levesquei. D'Orbigmy. Tab. 2, fig. $2 a-c$.
Beloptera Levesquei ; D’Orb. et Fér. 1839. Céphal. Acetab. Seiches, tab. 20, figs. 10-12.

- - Pictet. 1845. Traité élément. de Paléont. vol. ii, p. 316.
B. testâ oblongo-elongatâ, arenatâ, subtus carinatâ, lateribus depressâ, sub-excavatâ; anticè cylindrico-angustatä: rostro obluso, striato: appendicibus lateralibus parvis, linearibus.

Shell elongated, arehed: the sheath straight and nearly cylindrical; the ventral paries thickened, and laterally much eompressed, so that, instead of the flat squareshaped, bifurcating ridge which distinguishes the preceding speeies, it presents along the middle of the sheath, beneath the siphuneular line, a somewhat acute angular keel, which is continued on the upper part of the rostrum, and the sides of which are a little depressed. The rostrum itself is larger, and is transversely more compressed, and less infleeted towards the ventral aspeet, than that of B. Belemnitoidea.
M. d'Orbigny deseribes the species as destitute of lateral expansions; but, in the figures given by him, there are unquestionable indieations of those appendages, very slightly developed it is true, yet still representing the wing-shaped expansions which characterise the genus. In one of the two English specimens, the only two with whieh I am aequainted, and for the use of which I am indebted to Mr. Wetherell, the lateral expansions are broken away, but their existence is evidenced by a deep suture on cach side where they were inserted into the shell. The other speeimen unfortunately is broken off just above the juncture of the sheath with the rostrum, at the preeise part
at which the expansions would first appear ; but their presence is indicated by a slight curve in the outline eaused by their origin. I do not hesitate, therefore, to attribute to this species the charaeteristic lateral enlargements, although they are very feebly developed.
M. Deshayes, in his 'Description des Coquilles fossiles des Environs de Paris,' mentions a specimen in his possession, too mueh mutilated for description, in which the rostrum is smoother and more elongated, and the wings appear to be much narrower than in B. Belemnitoidea, and not to be inclined downwards as in that species; and for which, when better known, he thinks it will be necessary to form a new species. May not that specimen be referred to this species, whieh has been established since the publication of M. Deshayes's work ?

The English specimens of this species have hitherto been found only at Highgate, and are exceedingly rare. In France, according to M. d'Orbigny, the speeies occurs only in the lower strata of the Paris basin; that is to say, in the sands below the nummulite bed, at Thury-sous-Clermont, Gilocourt, and Cuise-Lamotte (Oise).

The size is twelve lines long and three lines wide.

> Genus 3d. Belemnosis.* F. E. Ellwards. Belopterd; J. D. C. Sowerby.

Animal unknown but supposed to be closely allied to the Belemnite.
Shell internal, oblong, semiconieal, with the apex infleeted towards the ventral aspect, and enlarged into an obtuse umbo, piereed by a pore on the ventral surface; the anterior part hollowed into a deep semiconieal cavity extending to the pore, and having the inner surface eovered by two ealeareous sheaths, one within the other, eontinued over the ventral surfaces of, and enveloping, a series of transverse septa, perforated by a ventral siphon.

Testâ internâ, oblongâ, semiconicâ, apice deorsum inflecto et in umbonem obtusum, foramine perforatum, dilatato; parte anteriori in eavitatem semiconicam, profundam, ad foramen tendentem, et septa transversa, siphone ventrali perforata, continentem, exeavatä; eavitatis superfieie duobus laminis eonieis, pertenuibus, cirea septa produetis et ea involventibus, obtectá.

The remarkable remains for the reception of which I propose the present genus are described by Mr. J. Sowerby in the 'Mineral Conchology,' and are referred by that author to Beloptera. M. Deshayes, in the first instance, in the 'Deseription des Coquilles fossiles, \&e.,' expressed an opinion that they could not be placed in that genus; subsequently, however, in the notice of the genus Beloptera, introduced in the second edition of Lamarck, after speaking of Belop. Levesquei, he refers not only that

[^34]species but also the Beloptera anomala of Sowerby to the genus Beloptera, the principal character of which he states to be the association of a conical chambered cavity, similar to that of the Belemnites, with the beak (rostrum) of the Sepia. M. d'Orbigny also (Moll. viv. ct foss.) refers to that genus the remains in question, which, he says, resemble Beloptera Levesquei in thc absence of the lateral wings, but are distinguished from it as well by the want of the under part (the ventral paries) of the shell and of a distinct beak, as by the air-chambers being apparent on the under side. These remains unquestionably bear a close affinity to Beloptera; but the peculiarities they present appear to me to scparate them distinctly from that genus, and fully to justify the establishment of a new genus for their reception.

The shell of Belemosis consists of an elongated semiconical sheath, the apex of which expands into a short semicylindrical umbo, pierced on the ventral surface, and inflected towards the ventral aspect. The sheath is convex on the dorsal surface, and is without a ventral paries; the margins at the superior extremity are narrow, and present outwardly sharp edges, which extend rather more than one third of the length of the shell ; as the margins approach the inferior extremity they expand, and the inner edges gradually become nearer to cach other, until they unitc immediately above the umbonal pore. The margins of the porc are elevated, and the pore itself penetrates to, and communicates with, the air-chambers. The septa are transverse and concave; the presence of a siphuncle and its ventral position are indicated by angular inflections on the sutural impressions along the medial line of the ventral surface; the septa are containcd in, and wholly enveloped by, a thin conical sheath, which also is covered by a sccond and somewhat thicker conical layer lodged in the outer sheath.

The principal character of Beloptera, viz., the association of the elongated rostrum of the Scpion with the phragmocone of the Belemnite, fails in Belemnosis; and the latcral expansions which, assuming their fullest development in Beloptera Belemnitoidea, still characterisc B. Levesquei, although reduced in that specics to prominent carinæ, are here wanting, or, at the utmost, are but feebly represented by the sharp outer edges of the ventral margins of the shicath. In Beloptera, the outer cone, which contains the inner sheath and its contents, and which exactly corresponds with the phragmocone of the Belcmnite, is entire; whereas, in Belemnosis, the ventral paries is wanting, or very thin. In this respect Belemnosis presents an analogy with Belemnitella (D'Orb.), a genus of the Belemnitidæ, characterised by a fissure in the phragmocone communicating with the external parics of the alvcolus. This peculiar form of Belemnitc at present appears to be confined to the upper chalk formation, and it would seem to connect the true Belemnite with the present genus, in which the fissure becomes largely expanded, rescmbling the wide cavity of Belosepia. Thus the transition from Belosepia, through Belemnosis and Belemnitella, into Belemnite will be easy and natural, and the chain of connexion between the latter genus and the recent Sepia will be complete.

The principal character, however, which distinguishes Belemnosis is the aperturc forming a communication betwcen the alveolar ehambers and the sac in whieh the shcll was lodged. In all the eameratcd siphoniferous shclls, I believe without exeeption, the inferior cxtremity of the alveolus and phragmoeone is perfectly closed, and the airehambers have not any direct communieation with the pallial sac ; and, in fact, eommunicate only with the perieardial cavity by means of the membranous siphunele. Walch, it is true, in his 'Recueil de Monumens, \&e.,' figured a Belemnite, whieh he deseribed as having a small circular hole at the extremity of a eurved point; upon which figure, with embcllishments of his own, De Montfort proposed the genus Paclites, referred to by Parkinson, and quoted by De Blainville. This genus, however, is universally rejected, as founded on eharaeters merely aeeidental or imaginary. M. d'Orbigny states, that in certain exceptional cases the extremities of the rostra of Belemnites, at the last period of their growth, form tubular prolongations, and that they are also liable to distortion from aeeident. The extreme points of the suceessive layers, whieh form the spathose guard, are apparently, in some instances, more suseeptible of disintegration than the other parts, and thus tubular openings may be formed along what Voltz terms the apicial line. But in all these eases the porc is merely terminal, and does not extend far up the sheath. The structurc found in Belemnosis, thereforc, appears to be peculiar to it; and would indieate an application of the siphuneular function, whatever that funetion may be, different from that in all other siphonifcrous shclls, and suggests a corresponding peeuliarity in the organization of the animal.

From the absenee of the clongated rostrum which charaeterises the Belosepia and Beloptere, we infer that the animal of Belemnosis was not littoral in its habits, but existed in a eomparatively deep sca; and the oceurrence of the unique specimen, upon which the genus is founded, at Highgate, where the organic remains indicate a shallow-sca deposit, is attributable most probably to the casual drifting of the animal.

No. 6. Belemnosis plicata. F. E. Edwarls. Tab. 2, fig. $3 a-e$. Beloptera anomala; Sowerby. 1829. Min. Con. vol. vi, p. 183, tab. 591, fig. 2.
— - Morris. 1843. Cat. of Brit. Foss. p. 178. — - Deshayes. 1845-6. 2d Edit. de l'Hist. Naturelle, \&c. par Lam.

- - D'Orbigmy. 1845-7. Moll. viv. et foss. tom. i, p. 309, tab. 14, figs. 8-10.

[^35]This shell is oblong, regularly convex on the upper surface, and terminated by a very obtuse, short umbo, compressed laterally, and slightly inflected towards the ventral aspect. The ventral margins are depressed, and present outwardly sharp edges, which extend rather more than one third of the length of the shell; the margins assume a convex form as they approach the inferior extremity, and at about two thirds of the length, become and continue nearly parallel until thcir union above the umbonal porc. The inner edges present three obscure, very oblique folds, from which character the specific name is taken. The umbonal pore is circular, and extends to the pyrites, with which the phragmocone is filled ; it is about one fourth of the breadth of the shell in diameter. The septa are distant.

This unique and valuable specimen enriches the cabinet of Mr. Sowerby, whose kindness in conceding the use of it for description I beg to acknowledge. It was found in the clay removed in constructing the arehway at Highway.

The length is 5 in .; the breadth at the upper extremity is 25 in ., and across the umbonal pore $\cdot 15 \mathrm{in}$.

Order-Tetrabrancitiata. Owen.

Family-Nautilide.

According to Von Buch, the division, which has been made of the tetrabranchiate Cephalopods into the two great families Nautilita and Ammonitida, has been determined solely by the position of the siphuncle, which, in the latter family, is invariably placed on the ventral margins of the septa; while, among the Nautilida, it is placed at or near the centre of the dises of the septa. Other differences exist in the form and condition of the septa, which, among the Nautilida, are characterised by simple curvatures or undulations, and by having their margins entirc; while, among the Ammonitida, the septa present a series of lobes or sinuous flexures, the margins of which are foliated.

A third group, however, cxists, in which the siphuncle is placed on the dorsal margin, and the septa are distinguished by angular or rounded lateral lobes, but their margins are perfectly simple. This group, for the typical forms of which Count Münster established the genus Clymenia, has been hitherto generally associated with the Nautilidæ; but I propose to separate it as a distinet family, under the name Clymenida.

The Nautilida will then be confined to those genera in which the siphuncle is central or excentric, that is, placed at the centre of the dise of the septum, or between that and the margin ; or, more strictly, to those in which it is not placed either on the ventral or on the dorsal margin.

As thus restricted, the Nautilidæ will consist of the following genera: Nautilus,

Planulites, Lam., Gyroceras, Lituitus, Campulites, Desh. (Cyrtoeeras, Gold.), Phragmoceras, Orthoceras, Actinoceras, Koleoceras, Portl., and Poterioceras, M‘Coy (Gomphoccras, Sow.)

Of these genera, the Nautilus only has bcen found above the secondary formations.
The generic distinctions are taken chiefly from the position of the siphuncle, and the mode of convolution or the form of the shell.

Genus 4. Nautilus-Gualtieri, Linnaus.
 Oceanus; Bisiphites. De Mont. Omphalia. De Haan.

Gen. desc. Animal ; body oblong, posteriorly rounded, and terminating in a slender membranaceous tube ; head above, with an ambulatory disc ; arms, nineteen (?) on each side ;* labial tentaculiferous appendages, four, arranged round the mouth; tentacula of three kinds, viz. ophthalmic, lamcllose, two on cach side; brachial, annulose, twenty on each side; labial, annulose, twenty-four on each side; the wholc body containcd in the last chamber of a large multilocular shell, and affixed by two lateral muscles.

Shell; discoidal, spiral, multilocular, with simple walls; the whorls contiguous, the last covering the others ; scpta transverse, concave without, perforated in the disc, margins quite simple.

Animal corpore oblongo, postice rotundato, tubo gracili membranaceo terminato; capite supra disco ambulatorio; brachiis utrinque novemdecem ; (!) appendicibus labialibus tentaculifcris, quatuor, circum os dispositis; tentaculis trium generum, quorum, ophthalmicis, lamellosis, utrinque duobus; brachialibus, annulosis, utrinque viginti; labialibus, annulosis utrinque viginti quatuor; toto corpore in camerá ultimá testa magna multilocularis recondito et musculis duobus lateralibus affixo.

Testä discoideâ, spirali, polythalamiâ, parietibus simplicibus; anfractibus contiguis, ultimo alios obtegente; septis transversis, extus concavis, disco perforatis, marginibus simplicibus.

The Nautilus is the only genus of the Ccphalopoda which, appearing among the earliest forms of animal life, has survived the various changes which the earth has undergone. The large family, of which it forms the typc, flourished during the Palæozoic epoch, and the Nautilus itself apparently attained its fullest development during the deposition of the carboniferous series, at which period nearly fifty species existed. Gradually diminishing in numbers, the genus passed through the Mcsozoic epoch into the tertiary era, which it has also survived; and though reduced to four species, which have not any fossil representative, \dagger it still exists in the tropical scas.

[^36]The Nautilus appears to have been known to Aristotle, of whose shell-bearing polypi, the second is considered to be the Nautilus Pompilius; the first species, the true Nautilus of the ancients, and to which Gualtieri gave the name Cymbium, is the Argonauta of Linnæus. Although the shell of the recent Nautilus has long been commonly known, little information existed as to the animal, beyond that given by Aristotle, until a comparatively recent period. At the beginning of the last century the Dutch naturalist Rumph drew the attention of zoologists to the animal of the Nautilus; a description of which, illustrated by figures, he gave in his work 'D Amboinische Rariteitkamer.' From Rumph's description, which, however imperfect, was more intelligible than his drawing, De Montfort gave an imaginary representation of the animal, wide of the truth, but which was adopted by Shaw. After the time of Rumphius not any additional information was procured until the arrival in England, in 1831, of a specimen of the Nautilus Pompilius, taken by Mr. Bennett in Marachini Bay on the south-west side of the island of Erramonga, one of the New Hebrides. It is true that in the preceding year MM. Quoy and Gaimard had published, in the 'Annales des Sciences Naturelles,' an account of a portion of some unknown molluscous animal, which they supposed to be the Nautilus Pompilius, found near the island of Celebes; but the remains were too imperfect for satisfactory description, and, in fact, they have gencrally been attributed to a Heteropodous Mollusc, either Carinaria or Pterotrachea. The specimen brought over by Mr. Bennett was placed in the hands of Professor Owen, who in 1832 published his Memoir before referred to with minute anatomical descriptions and illustrations. In 1839 M . Valenciennes published an account entitled 'Nouvelles Recherches sur le Nautile flambé,' taken from an individual transmitted to the Museum of Natural History at Paris. These two works afford ample information as to the animal, but it is unnecessary to enter into the details, a brief outline, sufficient for the present purpose, having already been given. Of the soft parts of the animals which inhabited the fossil shells, no trace has been found to assist the Palæontologist, who must, therefore rely wholly on the calcareous remains for specific distinctions. As regards the tertiary species, these distinetions appear to be tolerably well defined ; and but little difficulty will be found in the determination of the species.

The shell is smooth, spiral, and symmetrical ; suborbicular, or somewhat depressed, and more or less round on the ventral aspect; the margins of the aperture are smooth and simple; the whorls are contiguous, and convoluted in a vertical plane, the last being the largest and concealing the rest, by which character it is distinguished from Plamulites, the whorls of which are exposed. In some species the umbilicus is open; but more generally it is closed, as in the adult specimens of the recent N. Pompilius, by a deposition of nacreous or calcareous matter. The lines of growth are distinct, and in some species strongly marked, giving a somewlat striated appearance to the shell ; and they are reflected backwards, in which respect they differ from those of the Ammonitida,
which are bent forwards. The chambers are separated by transverse partitions, more or less undulated; and in one species, N. Parkinsoni, they are distinguished by lateral angular lobes, resembling those of Aturia (Nautilus) zic-wac, and the margins are invariably simple and entire. The discs of the septa are perforated at the centre, or at parts more or less distant from the margins, but never at the margin, by a calcareous siphuncle, variable in size and generally discontinuous, that is, extending more or less into the preceding chamber, but not into the preceding siphuncular aperture. The chambers themselves increase in size to the last, which is sufficiently large to contain the whole of the animal ; but the ratio of increase is apparently uncertain, and is influenced probably by the growth of the animal, which would, of course, depend on the supply of food and other circumstances.

The fossil substances termed Rhyncolites, which occur so frequently in the older formations, and which are generally believed to be the mandibles of some of the Tetrabranchiate Cephalopods, with whosc remains they are associated, have been found both in the Paris basin and in the tertiary formations in Belgium ; but I believe that as yet they have not been found in the Eocene strata of England.

The specific characters in this genus arc taken from the curvature of the septa, the general outward form of the shell, (which, in fact, determincs the shape of the septum,) the position of the siphuncle and the condition of the umbilicus. With respect to the terms dorsal and ventral, it must be borne in mind that they are used in the following descriptions in a sense directly the reverse of that in which they have been generally applicd. The Nautilus, in its normal position, rests upon, or creeps along the ground by means of, the free and cxpanded antcrior portion of the mantle. In this position the back of the animal is against the penultimate whorl of the shell, and the ventral part is containcd within the concavity of the dwelling-chamber. In the following descriptions, therefore, the term dorsal is used to designate the parts contiguous to the penultimate volution of the shell, and which have been generally, though incorrectly, described as ventral ; and the term ventral, on the other hand, will be applied to those parts on which the belly of the animal restcd, and which hitherto have usually been termed dorsal.

At present six species have been found in the tertiary strata of England, and they are confined to the older Eocene dcposits. In the contcmporaneous strata of the Paris basin two species occur, one of which is also found in Belgium; but not either of them has as yet been found in England; and four species have been described by Sismonda and Michelotti, as occurring in the Miocene formations in Piedmont. Two of these last species are referred by those authors to existing species; but the accuracy of the identification is questioned.

No. 7. Nautilus centralis. Sowerby. Tab. III, fig. la-c.
Nautilus centralis. J. Sow. 1812. Min. Con. vol. i, p. 11, tab. 1, left-hand figure.

- australis (by error for centralis). Defrance. 1825. Dict. des Sc. Nat. vol. xxxiv, p. 297.
- centralis. Wetherell. 1836. Philos. Mag. and Journal, vol. ix, p. 465.
- Bucklandi. (?) Michelotti. 1840. Ind. rag. di alcuni Testacei de Cefal. foss. \&c. Aun. delle Scien. del Regno Lomb.-Veneto, p. 4.
- centralis. Morris. 1843. Cat. Brit. Foss. p. 182.
- - Pictet. 1845. Traité élément. de Paléont. vol. ii, p. 338.
- - Sow. 1849. Dixon's Geol. Hist. \&c. pp. 110, 121, tab. 14, fig. 28.
N. testâ globosâ, in aspectu ventrali rotundatâ; aperturâ semilunari; umbilicatâ, umbilicis angustis, profundis; septis extus concavis, simplicissimis, siphone centrali, minimo, continuo perforatis; lobis dorsalibus latis, huud reflexis.

The \mathbf{N}. eentralis, in the simplieity of the septa and the eentral position of the siphunele, nearly resembles the recent Nautili. It is a very ventrieose, almost a globose shell, mueh rounded on the ventral aspeet; the aperture is bluntly lunate, nearly semieireular, and is rather more than twiee as wide as it is long; the open umbilieus is narrow and deep ; the septa are coneave outwardly, and simple, seareely presenting any undulation or second eurvature whatever : the dorsal lobes are broad, eaeh being nearly one third of the width of the aperture, and they are bluntly rounded on their superior margins; the siphunele is very small, eentral, or nearly so, and continuous. The lines of growth present broad undulations, and are strongly marked and deeussated.

Miehelotti has described a Nautilus from the Mioeene formations of the Colle de Torino, in Piedmont, to whieh he has given the name Bucklandi. He quotes N. centralis of Sowerby by the name N. custralis (an error into whieh he has fallen by relying on Defranee's quotation), and he eonsiders his shell to be identieal with it, and, oddly enough, assoeiates with it N. imperialis. The speeifie deseription given by this author agrees tolerably well with that of the present speeies; but I have not myself had any opportunity of eomparing the Piedmontese with the English shell; and as Miehelotti does not mention his having compared the two, and he appears to have trusted implieitly to Defranee, the aceuraey of the identifieation must for the present be eonsidered as doubtful.

Mr. Wetherell, in his paper above quoted, gives this speeies and Naut. regalis as eharaeteristie of the middle division of the three whieh he thinks might be made of the true London Clay. It oeeurs at Regent's Park, Chalk Farm, Hyde Park, Riehmond, Sheppy, and Bognor; it is also found, though very rarely, at Braeklesham Bay.

The species does not appear to have attained a great size, the largest speeimen not exeeeding 3.7 in . in diameter, by $3 \cdot 3 \mathrm{in}$. aeross. The figs. 1 and 2, Tab. IH, are taken from speeimens in the eolleetion of Mr. Wetherell; fig. 3, from one in that of Mr. Sowerby. The form of the septum is shown by fig. 2, Tab. VIII.

No. 8. Nautilus regalis. Sowerby. Tab. IV. Nautilus regalis. J. Sow. 1823. Min. Con. vol. iv, p. 77, pl. 355.

-	-	Def. 1825. Dict. des Sc. Nat. vol. xxxiv, p. 300.
-	-	Weth. 1836. Philos. Mag. and Journ. vol. ix, p. 465.
-	-	Morris. 1843. Cat. Brit. Foss. p. 183.
-	-	Pictet. 1845. Traité élément. de Paléont. vol. ii, p. 338.
-	-	Sow. 1849. Dixon's Geol. Hist. \&c. p. 120.

N. Testá lavigatâ, sub-ventricosâ, in aspectu ventrali compressâ, obscurè undulatâ; aperturâ obtusè-ellipticâ; umbilicis obtectis; septis simplicibus, concavis, utroque latere perparum undulatis, siphone sub-centrali perforatis; lobis dorsalibus brevibus, rotundatis, haud reflexis.

The present species is distinguishable from the preceding by the elosed umbilicus, and by its general form, which is less ventricose than that of N. centralis. It is a smooth shell, flattened on the sides, and bluntly rounded, and obseurely undulated on the ventral aspect. The aperture presents a subquadrate appearance. The umbilieus is closed by a thiekening of the lip, assuming the appearance of a solid axis to the shell. The septa are nearly simple, presenting on each side slight undulations, and the short, rounded dorsal lobes are deeply concave, and not reflected. In the young shell the septum is characterised by a conical depression placed on the dorsal margin elose to the preceding whorl; as the shell cnlarges this gradually deereases in size and depth, and ultimately disappears. It was of course moulded on a corresponding protuberance on the animal, probably an enlargement of the epithelial cincture. In some species the eavity is very deep. It was on this character that De Montfort, mistaking the depression for the mouth of a sceond siphunele, founded his genus Bisiphites. The siphuncle is small and cxeentrie. The lines of growth, like those of the prcceding species, are decussated, and reflected backwards in broad undulations.

The Nautilus regalis attained a large size. The specimen figured, for the use of which I am indebted to Mr. Dixon, measures 9.5 in . in diameter, by 5 in . across. The speeies occurs at Islington, Regent's Park, Chalk Farm, Hyde Park, and at Bognor. It appears to liave been one of the most common of the English Eocene Nautili. The septum is represented at Tab. VIII, fig. 5.

No. 9. Nautilus urbanus. Sowerby. Tab. III, fig. $2 a-b$.
Nautilus urbanus. J. D. C. Sowerby. 1843. Min. Con. vol. vii, p. 36, pl. 628. Morris. 1843. Cat. Brit. Foss. p. 183.

- - Pictet. 1845. Traité élément. de Paléont. vol. ii, p. 338.
N. Testâ discoideâ, in aspectu ventrali rotundatâ, et obscurè undulatâ; umbilicatê; aperturâ subquadratû, elongatâ; septis oblongis, concavis, in utroque latere leniter undulatis et siphone excentrico perforatis; lobis dorsalibus perbrevibus, obliquè truncatis, haudreflexis.

A flat discoidal shell, rounded on the ventral aspect, and presenting obscure undulations similar to those which characterise N. rcgalis. The aperture has an elongated, subquadrate shape; the umbilicus is narrow; the septa concave, and slightly undulated; they present on each side, in a line with the preceding whorl, a slight depression, which appears to be the first indication of the lateral lobes so fully developed in the N. Parkinsoni; the siphuncle is excentric approaching the dorsal margin; the dorsal lobes are short, very slightly concave, obliqucly truncated, and not recurved. The lines of growth are prominent, and dccussated more strongly than those of the two preceding spccies, and their undulations are broad and shallow.

The Nautilus urbanus is distinguishablc from N. contralis by its flatness, and the greater length of its apcrture; and from N. regalis by its open umbilicus, the truncated extremities of the dorsal lobes of the septa, and its discoidal shapc. It is a very rare shell. The figures $2 a, 2 b$, Tab, III, are taken from the shells drawn in 'Mineral Conchology,' the only specimens with which I am acquainted. The larger one, belonging to Mr. Sowcrby, was found in excavating St. Katharine's Docks, ncar the Tower of London; the smaller onc forms part of Mr. Bowerbank's collection, and was obtaincd from Sheppy.

The sizc of the larger individual figured is 7.4 in . in diameter, by 3.4 in . Fig. 4, Tab. VIII, represents the scptum.

No. 10. Nautilus imperialis. Sowcrby. Tab. V.
Nautilut mperialis. J. Sow. 1812. Min. Con. vol. i, p. 9, tab. 1, upper and right-hand figures.

$$
\begin{array}{lcl}
- & - & \text { Defrance. 1825. Dict. des Sci. Nat., tome xxxiv, p. } 297 . \\
- & - & \text { Wether. 1836. Philos. Mag. and Journ. vol. ix, p. } 465 . \\
\text { - } & \text { Bucklandi. Michelotti. 1840. Indice ragionato, \&c. p. 4. } \\
\text { - } & \text { imperialis. Morris. 1843. Cat. Brit. Foss. p. 182. } \\
- & - & \text { Pictet. 1845. Traité élément. de Paléont. vol. ii, p. } 338 . \\
\text { - } & - & \text { Sowerly. 1849. Dixon's Geol. Hist. \&c. pp. 110, } 120 .
\end{array}
$$

N. Testâ spharoidalc; umbilicatâ, umbilicis angustis, profundis; aperturâ subcllipticâ, semilunari; scptis mudatis, siphone mcdiocri dorso-cxcentrali perforatis; lobis dorsalibns latis et porparmm reflexis.

This spccies is easily distinguished from the N. centralis by the excentric position of the siphuncle, as well as by the broad and reflceted extremities of the dorsal lobes, which form, as it were, an axis to the shell. Its orbicular form, the lunate shape of the scpta, and the recurved dorsal lobes, distinguish it as clearly from N. regalis and N. arbanus.

The Nautilus imperialis is a somewhat globose shell, rather narrow on the ventral aspect, whence the aperture assumes a sub-elliptical form; the umbilicus is small and deep. It is well displayed in the large figure, Tab. V, taken from a specimen in Mr. Bowerbank's collection, but generally, it is found open only in young shells; in the larger specimens it is usually filled with pyrites or indurated clay. The septa are dceply concave, and present a gentle undulation on each side; the dorsal lobes are very broad, inflected towards the axis, and obliquely truncated on the inferior margins. The siphuncle is moderately large, and excentric, being placed on the dorsal sidc of the centre of the disc. It appears to vary in its position, gradually becoming more distant from the dorsal margin as the shcll enlarges. The lines of growth are reflected backwards in a deep narrow wave, and in the specimens I have seen are not decussated as in the three preceding species.

In the shell described by Michclotti under the name N. Bucklandi, and with which he has associated the present species, the siphuncle is central; and that character is, in fact, the reason assigned by him for considering his shell to be identical with N. centralis as well as with N. imperialis. Whether the alleged identification of N. Bucklandi with N. centralis be corrcet or not, it is obvious that the Picdmontesc shell cannot be referred to the present specics. Dcfrance states that the N. imperialis did not appear to differ from N. centralis, and Michelotti has, in fact, relied implicitly on that author; he has even copied the mistake made in quoting N. centralis as N. australis.

The N. imperialis attained a very large size; a specimen from Sheppy in the Muscum of the Geological Society measures 12 inches by 8.75 in . across. It appcars to have been widely spread, being found at Higligate, Hornsey, Brentford, Sheppy, Cuffell near Basingstoke, Clewett's Grcen, Newnham, Bognor, and Bracklesham. The form of the septum is shown in Tab. VIII, fig. 1.

No. 11. Nautilus Sowerbyi. Wetherell. Tab. VI.
Nautilus Sowerbyi. Weth. 1836. Phil. Mag. and Journ. vol. ix, p. 466.

- \quad Morris. 1843. Cat. Brit. Foss. p. 183.
- - Sow. 1843. Min. Con. vol. vii, p. 35, pl. 627, fig. 1-3.
- - Sowerby. 1849. Dixon's Geol. Hist. \&c. p. 121, tab. 14, fig. 28.
N. Testâ lavigatâ, lenticulari, ventrali aspectu angustè rotundatâ; umbilicatâ, aperturâ sub-triangalari; septis profundè concavis; siphone continuo, prope margines dorsales posito, perforatis; utroqne latere latè undalosis et sublobatis; lobis dorsalibus clongatis, valdè reflexis, obliquè truncatis.

The N. Sowerbyi is an exceedingly well-marked species. It is a smooth, discoidal, convex or rather lenticular shell, somewhat resembling in shape the Dax form of

Aturia (Nautilus) zic-zac, but it is narrower towards the margin, whieh cireumstance gives a triangular form to the aperture. The septa (Tab. VIII, fig. 3) are very eoneave, and present on eaeh side a broad undulation, with a deep sinus-like depression caused by a latcral lobe, more developed in this species than in N. urbanus, although not attaining the size and importance of that whieh distinguishes N. Parkinsoni.

The dorsal lobes are mueh recurved and obliquely truneated; the siphunele is moderately large, plaeed very near to the dorsal margin, and eontinuous. The striæ of growth towards the middle are suddenly bent backwards in deep undulations.

This speeies, whieh attained a size of 10 inehes in diameter by $4 \cdot 2$ in. aeross, was first obtained by Mr. Wethcrell from the tunnel made at Chalk Farm for the Birmingham Railroad. It has also been found in the euttings now in progress between Whetstone and Barnet for the Direet Northern Railroad, and it oecurs at Sheppy and at Bognor, where it is very eommon.

No. 12. Nautilus Parkinsoni. F. E. Edwards. Tab. ViI.
 Nautilite. Parkinson. 1811. Organic Remains, p. 105, pl. 7, fig. 15.

N. testả discoidcâ, apcrturâ clongato-cllipticâ, parictibus convexis; umbilicis (?) ; septis extuis concavis, in utroquc latcre angularilcr lobatis, siphonc, prope margincs dorsales posito perforatis; lobis latcralibus brcvibus, subtriangularibus, mucronatis; lobis dorsalibus latis, perparum concavis, ad extrcmitates attcnuatis, reftexis.

Parkinson, in his work above eited, deseribed the remains of a Nautilus, purehased by him at the salc of Dr. Menish's colleetion. Thesc remains, which eonsist of the easts of three chambers, afterwards came into the possession of Mr. Sowerby, who has placed them at my serviee. Parkinson was ignorant of the locality whenee they eame; but from their mineralogical charaeter, the matrix being, in faet, the substance known as cement-stone, it was supposed that they were found at Harwich. Lately the Rev. Thomas Image, of Whipstead, near Bury St. Edmunds, has forwarded to me for examination similar remains, unquestionably obtained at Harwieh, and consisting of the casts of two chambers, rather smaller than those in Parkinson's speeimen, and in a matrix prccisely similar. The question, thereforc, as to the loeality of Parkinson's speeimen is set at rcst.

These remains are partieularly intcresting, from the eireumstance that in them the angularly-lobed scptum which charaetcrises Aturia (Nautilus) zic- $\approx a c$, and in that slell is aecompanied by a strictly dorsal siphuncle, is associated with onc which, although very exeentric, is still so truly discal, as to prevent the shell being removed from the present genus. The form of the septum is a good specific character, but it cannot be relied upon as a gencric distinction. The Nautilus Parkinsoni, thereforc, although in general appearanee it closcly resembles Aluria, must, in faet, from the position of the siphuncle
be considered as an aberrant Nautilus, connecting that genus with Aturia, and leading through the Clymenida into Goniatites and Ammonites.

The N. Parkinsoni is a discoidal shell, with regular convex sides, and an clongated elliptical aperture. The specimens do not exhibit the condition of the umbilicus. The septa are outwardly moderately concave, with angular lobes on each side; the dorsal lobes are very broad, somewhat concave, rounded at the extremities, and reflected, although not much, towards the axis; the lateral lobes arc short, wide at the upper extremitics, and they taper rather suddenly; their infcrior margins arc nearly straight, but the superior margins present a deep sinus. The siphuncle is moderately large, and is placed on the dorsal part of the septal disc, half way between the centre and the margin. So far as the general character can be ascertained, the siphuncle does not appear to differ from that of Nautilus, and ccrtainly does not present any analogy with the wide trumpet-mouthed funnel which distinguishes Aturia.

This species appears to have attained a greater size than any other of the tertiary Nautili; the largest chamber in Parkinson's specimen mcasures seven inches in breadth, and nine inches in length; and this chamber was not the last, and consequently not the largest.

Family-Clymenide.

Aganide. Pictet, Deshayes, D'Orbigny.
Adopting the opinion of Von Buch, that the position of the siphuncle is the principal, if not the only, character by which the Tetrabranchiatc Cephalopods can be divided into families, it becomes impossible to include those genera in which the siphuncle is placed on the dorsal margin, either among the Nautilidæ, in which it is centrul or excentric, or among the Ammonitidæ, in which it is placed on the ventral margin. The only gencra at present known to possess a strictly dorsal siphuncle, are Clymeniu, Munst. (Endosiphonites, Ansted), and Aturia, a genus proposed by Bronn for the Nautilus Aturi, Basterot ($N . z i c-z a c$, Sow.) In fact, these genera have already been considered by MM. d'Orbigny, Deshayes, and others, to form a subdivision of the Nautilidæ, to which those authors have applied the name Aganidæ, founded on a genus proposed by De Montfort for a shell from the mountain limestone. This shell, however, possessed a ventral siphuncle, and belonged to the genus Goniatites.* The name Aganida, thercfore, cannot with propriety be retained as a family name for gencra characterised by a dorsal siphuncle; and I have adopted, in lieu of it, the name Clymenida, founded on Munstcr's genus.

* The shell figured and described by De Montfort as Aganides is, I believe, the Goniatites spluaricus of Sowerby.

The septa in the Clymenida are distinguished by lateral rounded or angular lobes; but the angular form is not peculiar to the family; since, as we have already seen, it is found in Nautilus Parkinsoni, a species which, possessing an excentric siphuncle, must be considered as merely an aberrant form of Nautilus; and the separation of the Clymenide will depend entirely on the siphuncle being placed on the dorsal margin.

The two genera which belong to this family are distinguished chiefly by the mode of involution of the shell; the whorls in Clymenia being exposed, while in Aturia the last whorl conceals the rest; they therefore bear to each other the same relation which Planulites bears to the true Nautilus.

Genus 5th. Aturia.* Bronn, 1837.

Gen. desc. A. testâ discoideâ vel subventricosâ, spirali, multiloculari, parietitus simplicibus; anfractibus contignis, ultimo alios obtegente; umbilicis clausis; septis transversis, numerosis, extûs concavis, utroque latere angulariter lobatis et parte dorsali, magnâ siphone infundibuliformi, marginibus positâ, rctro prolongatis; marginibns simplicibus.

Shell discoidal or subventricose, spiral, multilocular, sides simple; whorls contiguous, the last concealing the others; the umbilicus closed; septa transverse, numerous, concave outwardly, with an angular lobe on each sidc, and having the dorsal part prolonged backwards, forming a large, marginal, funnel-shaped siphon; margins of the septa entire.

The angularly-lobed septum which distinguishes Neutitus Parkinsoni also forms a prominent character in the well-known Highgate fossil, Nant. zic-zac, figured and described by Mr. Sowerby in the first volume of the 'Mineral Conchology.' Bronn, in his description of the Dax shell Nautitus Aturi (Bast.), which he considered to be distinct from N. zic zac, suggested the propricty of forming a sub-genus, to be called Aturia, for the reccption of those tertiary Nautili in which, according to the subgencric description given by lim, "the siphon is sub-ventral (i. e. sub-dorsal), and the septa have a decp, narrow, lancet-shaped flap on cach side." The siphuncle, however, in the Dax shell, on which the genus is founded, is, in fact, strictly marginal; it is, as Bronn liimself describes it, a prolongation backwards of the dorsal part of the scptum, in the shape of a wide-nouthed funncl, extending quite across the preceding chamber, and deeply into the mouth of the preceding funnel. As this funnel-shaped siphon decreases in diameter, the dorsal paries gradually recedes from the margin, and the intervening space is filled up with a calcareous deposit. The siphuncle, therefore, will in some parts of its extent appear to be sub-marginal only: whereas the mouth of the

[^37]siphuncle, by which only the position can be determined, is perfcctly marginal. The Nautilus Aturi, which I consider to be identical with Nautilus zic-zac, is the type of Bronn's genus, and I therefore retain the name proposed by that author, although I do not assent to the accuracy of his generic description.

The genus Clymenia, proposcd by Count Munstcr for certain Nautiliform remains occurring in the transition limestones of Fichtclgebirge, presents nearly the samc characters as those assigned by me to Aturia; except that in Clymenia the whorls are exposed, and the siphuncle is described as narrow ; whercas in Aturia the last whorl conceals the others, and the siphuncle, at least in A. zic-zac, the typical spccies, is of great size.

The genus appears to have been confincd to the tertiary epoch, and it is widely diffused. It occurs in the Eocenc formations of England, France, Bclgium, and Germany ; in the Miocene deposits in the basins of the Gironde, in Italy, and in Malta. It is also found in the Eocenc formation in Clarkc county, Alabama, (U. S.), and Conrad* mentions a cast from the contemporaneous formation near Long Branch, New Jersey, resembling Nautilus (Aturia) zic-zac, but more compressed, and which he has referred to De Montfort's genus Pelagus, and has named P. Vanuxemi. De Montfort's Pelagus, however, is described as having. "cloisons lobées, persillées, dentelées, \&c." The position of the siphuncle is not mentioncd in De Montfort's tcxt; but in the figure he has given it is placed on the ventral margin. The shcll, thercfore, on which the genus Pelagus is foundcd is an Ammonite, and the species constituting the present group cannot be associatcd with it.

No. 13. Aturia zic-zac. Brom. Tab. IX, fig. $1 a-h$. Var. a. Nautilus zic-zac. Sow. 1812. Min. Con. vol. i, p. 9, pl. I, fig. 3. Aymonites Wapperi. Van Mons. 1833. L'Institut. 1833, p. 272.

- - \quad 1834. Bull. de l'Acad. de Brux. tome i, No. 17, pp. 113, 118.
Nautilus Deshayesif. De Koninck. 1834. Notice sur un Moule pyriteux du Naut. de Desh. ; Bull. Soc. Géol. de France, t. iv, p. 437.
- - Nyst. 1835. Rech. sur les Coq. foss. de la Prov. d'Anvers, p. 35, No. 52.
- - De Koninck. 1837. Desc. des Coq. foss. de l'Argile de Basele, p. 1.
- Aturi. Bromn. 1837. Leth. Geog. vol. ii, p. 1123, pl. 42, fig. 17a-c.
- zic-zac. Desh. 1837. Desc. des Coq. foss. des Env. de Paris, vol. ii, p. 765, pl. 100, figs. 2, 3.
Clymenia zic-zac. Michelotti. 1840. Annal. Scient. reg. Lomb. Venet. p. 6.

[^38]Nautilus zic-zac. Nyst. 1843. Bull. Soc. Géol. de France, vol. xiv, p. 452.

- - - 1843. Desc. des Coq. foss. \&c. des Terr. tert. de la Belgique, p. 644, pl. 46, fig. 4.
- - Morris. 1843. Cat. Brit. Foss. p. 183.

Aganides Desilayesii. Sismonda. 1847. Method. Anim. invert. Pedemontii Foss. p. 57. - zig-zag. Pictet. 1845. Traité élément. de Paléont. Vol. ii, p. 341.

Náutilus (Clymenta ?) zic-zac. Sow. 1849. Dixon's Geol. Hist. \&c. p. 109, pl. 8, fig. 19.
Var. 乃. Nautile de Dax. De Montf. 1802. Buffon de Sonnini Moll. vol. iv, pp. 240, 252, pl. 46, fig. 1.
Nautilus Pompilius. Lam. Ann. du Mus. vol. v, p. 181.

- - - 1822. An. sans Vert. vol. xvi, p. 634.
- Deshayesii. Defr. 1825. Dict. de l'Hist. Nat. vol. xxxiv, p. 200.
- Aturi. Bast. 1825. Desc. des Coq. foss. des Env. de Bordeaux, p. 17.

Orbulites zic-zac. De Blainv. 1825. Man. de Malac. p. 387.
Nautilus (Aganides) Aturt. D’Orb. 1825. Tab. méthod. de la Classe des Céph. p. 71.

- Sypho. Buckl. 1836. Bridgw. Treat. vol. i, p. 357, pl. 46, figs. 1-4.
- - Grateloup. 1838. Cat. des An. vert. et invert foss. du Basin de la Gironde, p. 28.
Aganides Aturi. Pictet. 1845. Traité élément. de Paléont. Vol. ii, p. 341.
A. Testâ ventricosû, lavigatâ; umbilicis clausis; septis concavis; lobis lateralibus angustis, acutis; dorsalibus valdè recurvis; siphone magno, continuo, buccinaformi.

Var. β. Tcstâ compressâ, sub-discoidcâ; septis profundè concavis, lobis dorsalibus angustioribus.
Shell ventricose, smooth; umbilicus closed ; septa concave; latcral lobes narrow, pointed; dorsal lobes much curved; siphuncle large, continuous, trumpet-shaped.

There are scarcely any tertiary remains which have cxcited so much attention as the present; not mercly because the species is widely diffused, but because it presents an intermediate form between the Nautili and the Ammonites; and few fossils have been referred to more genera, or have been distinguished by a greater number of specific names.

The Aturia zic-zac was first described by Mr. Sowerby, scn., as Nautilus zic-zae, from a speeimen which was found on forming the tunnel of the Highgate Archway. Scveral years afterwards M. Defrance described a specimen from the Paris basin, and pointed out the differences which, in his opinion, rendered it difficult to refer the species to the genus Nautilus. M. Defrance considered the fossil described by him as distinct from the N. zic-zac, and gave to it the specific name Dcshaycsii. Subsequently Basterot described the well-known Dax fossil, which he named Naut. Aturi, and with which he considered the Naut. zic-zac to be identical. M. d'Orbigny and Sig. Sismonda, not regarding the dorsal position of the siphunele, but relying on the angular lobes which characterise the septa, have referred the shell in question to De Montfort's Aganides, a genus which, as has been before stated, was founded on a Goniatitc from the mountain limestone. Michellotti, on the other hand, has considercd
the present remains as forming part of Munster's Clymenia, a genus distinguished by its having the whorls exposed.

The Aturia zic-zac is a smooth, involute shell, more or less ventricose or depressed; the septa are outwardly deeply concave; and, owing to the regular curve in which the dorsal lobes are reflected towards the axis of the shell, they present, when viewed sideways, some resemblance to the letter S ; the lateral lobes are more or less narrow, and taper rather suddenly towards the inferior extremity, which extends nearly to the preceding septum; but they are without the sinus which characterises the lateral lobes of Naut. Parkinsoni. The English shells arc generally either casts in, or filled with pyrites, and it is difficult to aseertain the character of the siphuncle from them; but in the Dax shells, in which the calcareous siphon is frequently well displayed, it presents a structure widely diffcrent from that of the Nautilus. The dorso-marginal part of the septum, as I have before observed, is prolonged backwards in the form of a wide trumpet-mouthed funnel, which extends not only into the mouth of the funnel formed by the preceding scptum, but along the preceding siphuncle almost to the floor of the third preceding chamber (sec Tab. IX, fig. $2 a$). The ealcareous siphuncle, therefore, is, in fact, a continuous tube of considerable thickness, composed of portions of two distinct tubes; and within this is contained a soft, friable; calcareous sheath, which commences near the extremity of the funnel, where it touches the preceding funnel, and extends to the end of the preceding funnel, to the interior surface of which it forms a sheath. Although, owing to the thickness of the walls and the presence of the calcareous sheath, the actual tube within which the membranous siphuncle was contained is not so capacious as might be expected from its external appearance, it is yet considerably larger than that of any of the tertiary Nautili; and indeed it is of such size and importance as fully to justify the name Sypho, which Grateloup has given to the Dax shell. The siphuncle in the English specimens, so far as its character ean be ascertaincd, appears to correspond exactly with that of the Dax shells.

Great diversity of opinion has existed, and, in fact, still exists, as to the identity of the Dax shell with the Naut. zic-zac of Sowerby. The differences which have been relied on for the separation of the two appear to me to result from the more compressed form of the Dax shells; the specimen figured by Mr. Sowerby, although deseribed as "flattish," being ventricose, and the outline of one of the septa drawn below the shell conveying the idea of greater fulness than in fact characterises the fossil. M. Deshayes, who compared the Dax shells with specimens as well from the Paris basin as from Belgian and English localitics, expressed an opinion that the differences were sufficient to form, if not two species, at least two well-marked varieties. I have not myself had an opportunity of examining any French or Belgian specimens; but, through the kindness of Mr. Sowerby, Mr. Bowerbank, and Mr. Wetherell, who have afforded me the use of their specimens, I have before me a series of shells from Sheppy and the
neighbourhood of London, including the identical specimen figured by Mr. Sowerby. Confining myself to external characters only, two distinct forms occur in this series, the differences in which, although they may require a separation into varieties, are not sufficient, in my opinion, for specific distinctions.

In the first variety, which is the true Naut. zic-zac, figured in ' Mineral Conchology,' and which I have therefore taken for the typical form, the shell is ventricose, the greatest width being little less than half the diameter; it is moderately round on the ventral aspect, and the aperture is a somewhat elongated ellipsis. In the other variety (β) the shell is more compressed, almost discoidal ; and consequently it is narrower on the ventral aspect; the dorsal lobes are not so broad, and the aperture is of a more elongated oval form.

The French, Belgian, and German shells correspond apparently with the first, the typical form, and the Dax sleells agree closely with the second variety. Michellotti has used for the Piedmontese specimens the specific description given by M. Deshayes ; but he adds, that "they present some trifling differences from the Paris specimens, as do the latter from the London and Bordeaux shells." As, however, the Piedmentese shells are described as "ventricose," they must for the present be referred to the typical form, although we should naturally expect to find the Dax type continued in the Miocene formations of the Colle de Torino.

The Aturia zic-zac also occurs in the Miocene deposits in Malta, and the specimens which I have seen from that locality present the depressed form of the Dax shells, with which they agree in other respects.

Mr. Sowerby possesses a series of casts from the Eocene formation in Clarke County, Alabama, of a species whicl approaches very near to the typical Aturia zic-zac; the chief distinction appears to be in the form of the lateral lobes, which in the American shell extend quite to the margin of the preceding septa, and have their extremities inflected towards the axis, and present the deep sinus which characterises the lateral lobes of Naut. Parkinsoni. The siphuncle is very large, and corresponds with that of A. zic-zac. Conrad describes his Pelagus Vanuxemi as more compressed than the latter shell, and he adds that "the angles of the septa appear to be in contact near the periphery." This appearance, which is attributable to the length of the lateral lobes, and is represented in the figure given by Conrad by a continuous line running parallel with the periphery of the shell, is also found in the Alabama specimens, of which Conrad's shell is possibly only a compressed variety.

The typical form, which is represented at Tab. IX, fig. $1 a, 1 b$, drawn from the original specimen figured in 'Mineral Conchology,' for the use of which I am indebted to Mr. Sowerby, is found at Highgate, Sheppy, and Bracklesham Bay. The variety β, which corresponds with the Dax sleclls, was obtained from the railroad cutting at Chalk Farm, and from the well sunk for the use of the Orphan School, at Haverstock Hill,
near Hampstead. The specimen figured (Tab. IX, fig. $1 g, 1 /$,) is from the former locality ; it is the one drawn by Mr. Charlesworth in the 'Magazine of Natural History,' vol. i, (new series,) p. 533, and forms part of Mr. Wetherell's valuable collection of fossils from Highgate and the neighbourhood.

The English shells are apparently young; they are much smaller than the Dax specimens, the largest I have seen cannot have exceeded 1.6 in . in diameter.

TAB. I.

Fig.

1. Belosepia Sepioidea, p. 29. la-c. Var. B. longirostris.
a. Dorsal aspect.
b. Side view.
c. Ventral aspect.
ld-f. Var. B. longispina.
d. Dorsal aspect.
c, e^{\prime}. Side views.
f. Ventral aspect.
$1 g-i$. Var. B. Blainvillii.
g. Side view.
h. Do. of a cast of the Belosepion (B. Sepioidea).
i. Ventral aspect.
2. Belosepia brevispina, p. 32.
a. Dorsal aspect.
b. Side view.
c. Ventral aspect.
3. Belosepia Cuvieri, p. 31.
a, d. Ventral aspect.
b. Dorsal aspect.
c. Side view.
4. Dorsal aspect of the Belosepion (B. Sepioidea).
5. Longitudinal section of ditto.
6. Enlarged view of the terminal cavity and rostrum in the same section.
7. Enlarged view of an obliquely transverse section of the terminal cavity.
8. Dorsal aspect of the sepion (Sepia officinalis).
9. Longitudinal section of ditto.
10. Enlarged view of section of the rostrum of ditto.

TAB. II.

1a-g. Beloptera Belemnitoidea, p. 36 .
a. Ventral aspect.
b. Dorsal do.
c. Side view.
d. Longitudinal section.
e. Magnified view of do.
f. Ventral aspect of variety.
g. Dorsal aspect of do.
$2 a-\rho$. Beloptera Levesquei, p. 37.
a. Ventral aspect
b. Side view of a young specimer.
c. Dorsal aspect
d. Side view of an adult specimen.
e. Ventral aspect of ditto.
$3 a-e$. Belemnosis plicata, p. 40.
a. Dorsal aspect, nat. size.
l. Side view (enlarged) of the umbonal pore.
c. Ventral aspect enlarged.
d. Side view, nat. size.
e. Ventral aspect, ditto.
 (a)

2
≈ 4

d 4 4 4

bevir

TAB. III.

Fig.
la-c. Nautilus centralis, $p .45$.
a. Back view.
b. Side view.
c. Do., young shell.
$2 a-b$. Nautilus urbanus, p. 46 .
a. Side view, young shell.
b. Do., adult do.

TAB. VIII.

Fig.

1. Transverse section showing the form of the septum in Nautilus imperialis, p. 47 .

2.	Do.	do.	N. centralis, p. 45.
3.	Do.	do.	N. Sowerbyi, $p .48$.
4.	Do.	do.	N. urbanus, $p .46$.
5.	Do.	do.	N. regalis, p. 46.

Tab. VIII

d.De C. Sowerth liert

TAB. IX.

Fig.
la-h. Aturia zic-zac (English specimens), p. 52.
a. Side view of the typical form, from Highgate.
b. Front view do. do.
c. Side view do. from Sheppy.
d. Front view do. do.
e. Side view do. from Bracklesham Bay.
f. Front view
do.
do.
g. Side view of the compressed variety (β), from Chalk Farm.
h. Front view
do.
do.

2 and 3. Aturia zic-zac (Dax specimens).
2. Oblique view, showing the construction of the siphuncle.
3. Front view, showing the form of the septum.

L I S T

OF THE

COUNCIL, SECRETARIES, AND MEMBERS

OF THE

PALEONTOGRAPHICAL SOCIETY.

1848.

程resionent.

SIR HENRY T. DE LA BECHE, F.R.S., F.G.S., F.L.S., \&c.

Coumcil.

PROF. ANSTED, M.A., F.R.S., G.S., \&e.
R. A. C. AUSTEN, Esq., F.G.S., \&c. GEORGE BUSK, Esq., F.L.S., \&̌c.
F. E. EDWARDS, Esq.

SIR PHILIP DE MLLPAS GREY EGERTON, Bakt., M.P., F.R.S., L.S., G.S., \&c.
W. H. FITTON, M.D., F.R.S., L.S., G.S., \&c. J. W. FLOWER, Esq.

PROF. E. FORBES, F.R.S., L.S., G.S., \&c.
L. L. B. IbBETSON, Esq., K.R.E., F.G.S., \&e. SIR CHARLES LYELL, M.A., F.R.S., L.S., Pres. G.S., \&c.
JOHN MORRIS, Ese., F.G.S., \&c.
J. C. MOORE, Esq., Sec. G.S., \&c.

PROF. OWEN, M.D., LL.D., F.R.S., L.S., G.S., \&e.
PROF. A. C. RAMSAY, F.G.S., \&c.
DANIEL SHARPE, Esq., F.L.S., G.S., \&c.
N. T. WETHERELL, Esq., F.G.S., \&e.

Treasurre.

SEARLES WOOD, Esq., F.G.S., \&c., 2S, Fortess Terrace, Kentish Town.

yomoravy きrcrtary.

J. S. BOWERBANK, Ese., F.R.S., L.S., G.S., \&e., 3, IIighbury Grove, Islington.

zocal sectetarics.

Aberdeeni	G. Dickie, M.D.
Alton	William Curtis, Jun., Esq.
Bedford	T. Herbert Barker, Esq., M.B.
Birmingham	J. MI. Blount, Esq.
Blandford	Edward Oke Spooner, Esq.
Bolton	Mattimew Dawes, Esq., F.G.S., \&e., Westljrook.
Brighton	Henry Catt, Esq.
Bristol	William Sanders, Esq., Clevedon.
Cambridge	- Javies Carter, Esq.
Cheltenham .	- Walter Carr, Esq.
Cirencester	- Prof. James Bucrman, F.G.S., \&e.
Colchester	Join Brown, Esq., F.G.S., \&e., Stanway.
Deddington.	- Charles Faulkner, Esq., F.G.S., \&c.
Derby	Anos Beardsley, Esq., Langley Ifeanor.
Devizes	- William Cunnington, Esq.
Dudley	Johy Gray, Esq.
Exeter	- IV. R. Scott, M.D., \&e., St. Leonards.
Glasgow	Williaic Gourlie, Esq.
Gloncester	- John W. Wilton, Esq.
Halifax	James Inglis, M.D., \&c.

Hastings	Hoadhey Gabb, Esq.
Huddersficld	Robert Welsi, Esq.
Huntingdon	Rev. John Thornton, M.A., F.G.S., \&e.
Isle of Wight	S. M. Saxby, Esq., Bonchurch.
Kendal	Thomas Gougit, Esq.
Leeds	Thomas Nunneley, Esq., F.R.C.S.E.
Leicester	Jabies Plant, Esq.
Maidstone	David Walker, Esq., M.A., F.G.S.
Norwich	Robert Fitch, Esq.
Nottingham.	Booth Eddison, Esq.
Plymouth	J. H. Fuge, Esq.
Portsmouth	W. A. Raper, M.D.
Stamford	John F. Bentley, Esq.
Stowmarket	C. Bree, Esq.
Swafliam	C. B. Rose, Esq.
Torquay .	William Pengelly, Esq.
Wexford.	Cinarles Cookitan, Esq.
Weymouth	Mr. R. Damon.
Wolverhampton	Henry Beckett, Esq., Church-street.
York . . .	E. T. Higgins, ${ }^{\text {, Esq., }}$, 25, Spurrier Gate.

LAWS.

I.

That the Society formed be called the Palæontographical Society, and that it shall have for its objects the illustration and deseription of British fossil organic remains.
II.

Each Subscriber of One Guinea, or more, annually, shall be considered a Member of the Society. Suel subseription to be paid in advanee, and shall be due on the 1st day of January, 1847, and each succeeding year.

III.

A Member shall, for each Guisea subscribed annually, be entitled to one copy of every publieation issued by the Soeiety, for the year to which his subscription relates. But no Nember shall be entitled to reeeive his copy, or copies, until his subseription has been paid.

IV.

The number of copies of the Society's publications shall be limited to the number of Members, unless otherwise directed by the Council.

V.

The business of the Society shall be eondueted by a President, Treasurer, Hon. Secretary, and a Council of sixteen Members, who shall be elected at a General Meeting of the Members, to be held annually in London.

VI.

The aeeounts of the reeeipt and expenditure of the Society shall be examined annually by two Auditors appointed by the Couneil; the Auditors to be Members of the Socicty, who are not Members of the Council, and their statement eirculated among the Subscribers.
VII.

That the Editors of works published by the Soeiety be entitled to a number of copies of their works, not exceeding twenty-five, as may be deeided by the Council.

REGULATIONS FOR THE DELIVERY OF BOOKS.

They are delivered, free of expense, within three miles of the General Post Office, London.

They are sent to any place in England, beyond the distance of three miles from the General Post Office, by any conveyance a Member may point out. In this case the parcels are booked at the expense of the Society, but the carriage must be paid by the Member to whom they are sent.

They arc delivercd, free of expense, at any place in London which a Member, resident in the country, may name.

They are sent to any of the Hon. Local Secretarics of the Society, each Member being expected to pay the Local Secretary a due share of the carriage of the parcel in which the books are sent.

Any number of Country Members may unite, to have their books sent in one parecl to any address they may name. In this case they are requested to depute onc of their number to transmit to the Secretary for London a list of the names of those whose books are to be inchided in the same parcel.

Those Members who wish their books to be included in any of the parcels to Local Secretaries, are requested to send in their names (with their Christian name in full) and particular address to the various Local Secretaries, who are respcetfully requested to forward to the Secretary for London an accurate list of all such names, with as littlc delay as possible.

Unless intimation to the contrary be given to the Sccretary for London, the future deliveries will be made in accordance with the delivery of the first volume.

The Council, desirous of imposing as little trouble as possible upon the Local Sccretarics, particularly request that all subscriptions be paid by Mcmbers directly to the Treasurer, Searles Wood, Esq., 28, Fortess Terrace, Kentish Town, by Post Office Order on the London Office, or by Cheque on a London Banker. And, as there is no other capital for conducting the affairs of the Society than the subscriptions paid in advancc, the Country Members are respectfully reminded that an early remittance is absolutcly necessary.

As the quantity of plates and letterpress to be delivered to the Subscribers annually will be increased in proportion to the cxtcnsion of the Society, the Mcmbers are respectfully urged to obtain as many new Subscribers, and at as early a period, as possible.

Gentlemen desirous of forwarding the objects of the Society, may be provided with circulars for distribution by application to the Hon. Sccretary.

LIST OF MEMBERS.

Adam, Thomas, Esq. Halifax.
Adams, W. Esq. Museum, Matlock.
Addison, Rev. John, Weymouth.
Alder, Joshua, Esq. Newcastle-on-Tyne.
Alexander, W. H. Esq. Ipswieh.
Alcxander, Miss, Goldrood, Ipswich.
Alexander, Miss M. Ipswich.
Allingham, William, Esq. Reigate.
Allport, J. J. Esq. Gateshcad, near New-castle-on-Tyne.
Ambrose, Jno. Esq. Colehester.
Ansted, Prof. M.A., F.R.S., G.S. \&c. King's Collcge, London.
Arlidge, John T., A.B., \&c. Royal Collegc of Surgeons.
Asher, A. Esq. Berlin.
Ashmolean Society, Oxford (per Rev. E. Hill, Christchureh).
Atkinson, Rev. J. C. Danby, Guisborough, Yorkshire.
Austen, R. A. C. Esq. F.G.S. \&c. Merrow, Guildford, Surrey.
Aveline, W. T. Esq. Geological Survcy, Craig's Court, Charing Cross.
Ayres, Ph. B., M.D. 12, Howland-street.
Babington, C. C. Esq. M.A., F.G.S., L.S. \&c. St. John's College, Cambridge.
Backhouse, Wm. Esq. Darlington.
Bainbridge, William, Esq. Ncweastlc.
Baines, Rev. J. W. Viearage, Kendal.
Baker, Rev. F., M.A. Fairfield House, Bolton.
Baker, Robert, Esq. Writtle, Essex.
Balfour, Prof. F.L.S. \&c. Edinburgh.
Ball, R. Esq. M.R.I.A. Scc. Geo. Soc. Dublin, \&e. 3, Granby-row, Dublin.
Barker, F. H. Esq. M.B. Bedford.
Barlec, George, Esq. Clifton.
Barlow, Trederiek, Esq. Burgh,Woodbridgc. Barrow, P. Esq, 7, Clifford-st. Manehester.
Basevi, Mrs. 6, Berkeley-plaee, Cheltenham.

Bass, Istac Gray, Esq. Brighton.
Bates, John, Esq. Sec. Royal Yacht Society, Cowes, Isle of Wight.
Battersby, Robert, M.D. Torquay.
Beadon, William, Esq. 1, Creseent, Taunton.
Beardsley, Amos, Esq. Langlcy Heanor, near Derby.
Beardsley, J. W. Esq. Shipley, Derbyshire.
Beckett, Henry, Esq. Church-street, Wolverhampton.
Belfast Library.
Bell, Isaac L. Esq. Ncweastlc-on-Tyne.
Bell, Prof. F.R.S., L.S., G.S. \&c. 17, New Broad-street, City.
Bell, Robert J. Esq. Micklcover House, Derby.
Bennett, J. Esq. 18, Duke-st. Westminster.
Bennett, William, Esq. 7, Park Village West, Regent's Park.
Benson, Starling, Esq. Swansca.
Bentley, J. F. Esq. Stamford, Lincolnshire.
Bergh, Augustus, Esq. 2, Clifton-road, Brighton.
Bernard, Ralph M. Esq. Clifton.
Bernasconi, B. Esq. 19, Alfred-place, Bed-ford-square.
Berlin, Royal Library of
Berlin, Library of Mining, Dcpartment of
Beyrich, Dr. Berlin.
Bidwell, Henry, Esq. Albrighton, Wolverhampton.
Bigge, Matthew, Esq. Neweastle-on-Tyne.
Bilke, Edward, Esq. F.G.S. \&c. 2, Stamfordstreet.
Binfield, William Richard, Esq. Rodneyterraee, Cheltenham.
Binney, E. W. Esq. Manehester.
Birmingham Old Library, Union-strect.
Blackie, W. G. Esq. Ph. D., F.S.A.S. \&c. Villafield, Glasgow.
Blackwell, S. II. Esq. Dudlcy.

Blackwell, Thos. E., F.G.S. \&c. Foxhangers, Devizes.
Bladon, James, Esq. Pontypool.
Blount, J. H. Esq. M.B. Francis-street, Edgbaston, Birmingham.
Boase, H. S., M.D., F.R.S., G.S. \&c. Claverhouse, near Dundee.
Bodley, T. Esq. F.G.S. \&c. Anlaby House, Pitville, Cheltenham.
Bompas, C. S. Esq. 17, Park-street, Bristol.
Bompas, J. C., M.D. Fishponds House, Bristol.
Bonn, Library of Mining, Department of
Booth, J. R. Esq. 131, Hope-street, Glasgow.
Borradaile, Charles, Esq. Upper Tooting, Surrey.
Borough Museum, Sunderland.
Botfield, Beriah, Esq. M.P., F.R.S., L.S. \&c. 9, Stratton-street.
Bouch, Thomas, Esq. Edinburgh and Northern Railway Office, Edinburgh.
Bower, Rev. E. Closworth, near Yeovil.
Bowerbank, J. S. Esq. F.R.S., L.S., G.S. \&c. 3, Highbury Grove.
Braickenridge, G. W. Esq. F.S.A., G.S. \&c. Broomwell House, Brislington.
Bramley, Lawrence, Esq. Halifax.
Brec, C. R. Esq. Stowmarket, Suffolk.
Brewster, Sir David, K.H., LL.D., F.R.S. \&c. St. Leonard's College, St. Andrew's.
Briggs, Major-General, F.R.S.. G.S. \&c. 24, Conduit-street, Bond-strect.
Bright, Richard, M.D., F.R.S. \&c. 11, Saville-row.
Bristow, Henry W. Esq. F.G.S. \&c. Cerne Abbas, Dorsetshire.
Broderick, Miss C. 9, King-st. Grosvenorsquare.
Broome, C. E. Esq. M.A. \&c. Clifton, Bristol.
Brown, Gopsill, Esq. Gloucester.
Brown, John, Esq. Overseal, near Ashby-de-la-Zouch.
Brown, Edwin, Esq. Burton-on-Trent.
Brown, Isaac, Esq. Ackworth.
Brown, John, Esq. F.G.S. \&c. Stanway, near Colchester.
Bruce, Rev. J. C. Newcastle-on-Tyne.
Brunel, J. K. Esq. F.R.S., G.S. \&c. 18, Duke-street, Westminster.
Bryson, Alexander, Esq. Edinburgh.

Buckland, Rcv. Dr., F.R.S., G.S., L.S. \&c. Deanery, Westminster.
Buckman, James, Esq. F.G.S. \&c. Royal Agricultural College, Cirencestcr.
Bull, Henry, Esq. Godalming.
Bunbury, E. II. Esq. F.G.S: \&c. 15, Jermynstreet, Piccadilly.
Burchard, J. H. Esq. F.G.S. \&c. Putney Hcath, Surrey.
Burlington, The Earl of, Chancellor of the University of London, F.R.S., G.S. \&c. 10, Belgrave-square.
Busk, George, Esq. F.L.S. \&c. Croom's Hill, Greenwich.
Butcher, Henry J. Esq. Devizes.
Butler, J. E. Esq. Alton, Hants.
Button, Charles, Esq. Holborn Bars.
Cambridge University Library, (per Rev. Tower).
Campbell, James W.Esq. Exchcquer, Edinburgh.
Camplin, Jno. M. Esq. F.L.S. Finsbury-sq.
Capewell, L. P. Esq. Abberley House, Dudley.
Carpenter, W. B., M.D., F.R.S. \&c. 6, Regent's Park-terrace, Gloucester Gate.
Cardiff Litcrary and Scientific Institution.
Carter, Jamcs, Esq. 20, Pctty Cury, Cambridgc.
Carter, R. Esq. Halifax.
Carr, Ralph, Esq. Dunston Hill, Ncweastle.
Catt; Henry, Esq. West-street, Brighton.
Cautlcy, Major, F.R.S. \&c. 39, Lower Grosvenor-street.
Cawdor, The Earl of, Trustee, British Museum, F.R.S., G.S. \&c. 74, South Audley-st.

Chambers, Robert, Esq. F.R.S.E., G.S. \&c. Edinburgh.
Chandler, A. T. Esq. Godalming.
Chapman, Samuel, Esq. Costock, near Loughborough.
Chapman,Thomas, Esq. F.G.S.3, Arundel-st.
Charlesworth, Edward, Esq. F.G.S. \&c. Museum, York.
Charlesworth, Samuel, Esq. Devereux Buildings, Temple.
Charlton, E., M.D. Ncwcastle-on-Tyne.
Chippenham Literary and Scientific Institution.

Chisholme, W. Esq. Dorking.
Clanny, W. Reid, M.D. Sunderland.
Clapham, Richard, Esq. Austwick Hall, near Settle.
Clark, Edward, Esq. F.G.S. \&c. Sandgate, Kent.
Clark, Henry, M.D. Midland House, Southampton.
Clark, Rev. Samuel, St. Mark's College, Chelsea.
Clark, Rev. Francis F., B.A. Hartshill Parsonage, Neweastlc, Staffordshire.
Clark, Rev. W., F.R.S. \&c. Cambridge.
Clayton, Rev. J. H. Farnboro' Rectory, Bagshot.
Clayton, Rev. J. Springfield, Norwood.
Clegg, Samuel, Esq. C.E. Ringwood, Dorsetshire.
Clement, J. W. Esq. Alton, Hants.
Clennell, Jno. E. Esq. Haekney.
Closworth, Edward B. Esq. Yeovil.
Colehester, W. Esq. Harwich.
Cole, Jno.W. Esq. 26, Herbert-plaee, Dublin.
Coleman, E. H. Esq. Wolverhampton.
Coles, Henry, Esq. F.G.S. \&e. Cheltenham.
Colvin, Lieut.-Col. C.B. Leintwardine, near Ludlow.
Collings, W. T. Esq. F.L.S., G.S. Guernsey.
Collingwood, F. S. W. Esq. Glanton Pyke, Glanton, Northumberland.
Combe, G. A. Esq. Preston, Sussex.
Conybeare, Rev. W. D., F.R.S. \&c. Deancry, Llandaff.
Cooke, W. R. Esq. Burford, Oxon.
Cooke, Rev. R. B., F.G.S. \&c. Wheldrake Rectory, York.
Cookman, Capt. C. Monart House, Enniscorthy, Wexford.
Cooper, R. Esq. Bilston, Birmingham.
Cooper, Rev. W. H., M.A. \&e. 44, Sussexsquare.
Cooper, Rev. W. W. West Rasen, near Market Rasen, Lincolnshire.
Cornthwaite, Rev. T. M., M.A. Walthamstow.
Cornwall Geological Soeiety, J. Carne, Esq. Penzance.
Cornwall Library, Truro.
Cotsworth, Mrs. Reading.

Cottam, S. E. Esq. F.R.A.S. 28, Brazenosestreet, Manchester.
Cotton, R. P., M.D, \&e., 4, Bolton-street, Piccadilly.
Craig, John, Esq. Edinburgh.
Crewdson, W. D., junior, Esq. Elleray, near Bowness.
Crowley, Alfred, Esq. Croydon, Surrey.
Crowley, Frederiek, Esq. Alton, Hants.
Crowley, Henry Esq. Thornton Heath, Croydon.
Crum, Walter, Esq. F.R.S. Thornliebank, Glasgow.
Cubitt, W. Esq. F.G.S. \&c. Bedford Hill, Streatham, Surrey.
Cull, R. Esq. 13, Tavistoek-st., Bedford-sq.
Cunningham, John, Esq. F.G.S. Hope-street, Liverpool.
Cunningham, John, Esq. 29, Seal-street, Liverpool.
Cunnington, W. Esq. Devizes, Wilts.
Currer, Miss, Eshton Hall, near Skipton, Yorkshire.
Curtis, Jonathan, Esq. Staines.
Curtis, W. junior, Esq. Alton, Hants.
Dalyell, Sir John G. Bart. Edinburgh.
Damon, Mr. R. Weymouth.
Danby, Rev. John, Laneaster.
Darbishire, C. J. Esq. Rivington, near Bolton.
Davis, J. E. Esq. F.G.S. \&e. 1, Elm-eourt, Temple.
Daw, Robert, Esq. Cardiff.
Dawes, J. S. Esq. F.G.S. \&e. West Bromwieh, Staffordshire.
Dawes, M. Esq. F.G.S. Westbrook, Bolton.
Dawson, G. Esq. F.G.S. \&c. Edgbaston, Birmingham.
Day, Alfred, D.C.L. Clevedon, near Bristol. Deane, H. Esq. Clapham, Surrey.
De La Beche, Sir H. T. Pres. G.S., F.R.S., L.S. \&e. Craig's-court, Charing Cross.

Dennes, G. E. Esq. F.L.S., G.S., \&e. Greeian Chambers, Devereux-court, Temple.
Derby Literary and Scientific Soeiety.
Dickenson, Joseph, M.D., F.L.S. \&e. 29, Nelson-street, Great George-square, Liverpool.
Dickie, George, M.D. Aberdeen.

Dickinson, W. Esq. North Mosses, Whitehaven.
Dickinson, Joseph, Esq. F.G.S. New Cumnock, Kilmarnock.
Dickinson, Henry, Esq. Coalbrook Dalc.
Dilke, C. Wentworth, Esq. 76, Sloane-street.
Dillwyn, L. W. Esq. F.R.S., L.S., \&c. Sketty Hall, Swansea.
Dillwyn, L. L. Esq. F.R.S., L.S. \&c. Burrows Lodge, Swansea.
Dixon, F. Esq. F.G.S. \&c. Worthing.
Dixon, Thomas, Esq. Rheda, Whitehaven.
Dolphin, John, Esq. Hunter House, Gateshead.
Dorset County Museum Library, Dorchester.
Douglas, Rev. Robert, Penn-road, Wolverhampton.
Douglas, R. C. Esq. Stafford.
Dover Proprietary Library.
Drewitt, R. D. Esq. Arundel.
Duff, Patrick, Esq. Elgin.
D'Urban, John, Esq. 9, Hamilton-place, St. John's-wood-road.

Eagle, Francis, Esq. Bury St. Edmunds.
Eardley, Lady, Frognell, Torquay.
Eaton, Rev. George, The Pole, Northwich.
Eaton, Robert, Esq. Cotham, Bristol.
Eddison, Booth, Esq. F.R.C.S. \&c. Nottingham.
Edington, W. Esq. 18, Leinster-street, Dublin.
Edwards, F. E. Esq. ', John-street, Down-shire-hill, Hampstead.
Edwards, Henry J. Esq. M.P. Hope Hall, Halifas.
Edwards, William, Esq. 40, High-street, Camden Town.
Egerton, Sir Philip de Malpas Grey, Bart. M.P., F.R.S., G.S., \&c. Oulton Park, Cheshire.
Ellesmere, The Earl of, D.C.L. \&c. \&c. Belgrave-square.
Elliot, John, Esq. Kingsbridge, Devon.
Ellis, Miss Eliza, Belgrave, near Leicester.
Elwes, John, Esq. Bossington, near Stockbridge, Hants.
Enniskillen, William Willoughby, Earl of, D.C.L., F.R.S., G.S., \&c. Florencecourt, Enniskillen.

Evans, J. Esq. F.S.A. 17, Upper Stamford-st.
Evans, John, Esq. F.G.S. \&c. 32, Hertfordstreet, May Fair.
Evans, Thomas, M.D. Gloucester.
Ewing, James, Esq. LL.D. F.R.S.E. Strathlevens, Dumbartonshire.

Falconer, Dr. F.R.S., L.S., G.S. \&c. Bombay. Falconer, Thomas, Esq. Wooten, Christchurch, Hants.
Falkner, Thomas Alexander, Esq. M.A. Manningford, near Pewsey, Wilts.
Falkener, Miss, 21, Bloomsbury-square.
Farnham, Lord, Carlton Club, 94, Pall Mall.
Faulkner, Charles, Esq. Museum, Deddington, Oxon.
Featherstonhaugh, Rcv. Walker, Ovingham, near Newcastle.
Fenton, James, Esq. M.A. Grappenhall Lodge, near Warrington.
Ferguson, Daniel, Esq. Redcar, Yorkshire.
Ferguson, W. Esq. 18, Wharton-strcet, Pentonville.
Fewkes, Thomas, Esq. Barrow-on-Soar.
Finsbury Medical Book Socicty, 2, St. Mary Axe.
Fisher, Rev. J. H., F.G.S. \&c. Kirby Lonsdale.
Fisher, Rev. Osmond, M.A. Dorchester.
Fisher, William Richard, Esq. F.L.S. \&c. 5, Verulam-buildings, Gray's Inn.
Fitch, Robert, Esq. F.G.S. \&c. Norwich.
Fitton, W. H., M.D., F.R.S., L.S., G.S. \&c. 53, Upper Harley-street.
Fleming, Rev. J., D.D., F.R.S.E., \&c. New College, Edinburgh.
Fleming, Rev. John, M.A. \&c. Bootle, near Liverpool.
Fleming, W. M.D. \&c. Broughton View, Manchestcr.
Fletcher, I. F. Esq. Peel Hall, Bolton.
Fletcher, T.W. Esq. F.R.S., S.A. \&c. Dudley, Worcestershire.
Flower, J. W. Esq. 61, Bread-street, City.
Forbes, Prof. E. F.R.S., L.S., \&c. Geological Survey, Whitehall.
Foster, John, Esq. Bedford-buildings, Parkroad, Clapham.
Fox, Thomas, Esq. Rushmere, Ipswich.

Fox, Rev. W. D. Delamere Forest, near Chester.
Franks, A. W. Esq. Trin. Coll., Cambridge. Fraser, William, Esq. Drainage Office, Borris in Ossory, Queen's County.
Fryer, Alfred, Esq. Ventnor, Isle of Wight.
Fryer, J. H. Esq. Whitley House, North Shields.
Fuge, J. H. Esq. F.R.C.S.E. Plymouth.
Fuller, Henry J., M.D., 45, Half Moon-st.
Gabb, D. H. Esq. 5, Wellington-square, Hastings.
Galton, Douglas, Esq. R. E. 20, Duke-strect, St. James's.
Gandy, Gerard, Esq. Kendal.
Gassiot, I. P. Esq. F.R.S. \&c. Clapham.
Gavey, George E. Esq. Chipping Canden, Gloucestershire.
Geological Society of Manchester.
Gibbs, John, Esq. Evesham.
Gibbs, John, Esq. Norville House, Evesham.
Gibbs, John, Esq. Birmingham.
Gibson, G. S. Esq. Saffion Walden.
Gillett, J. A. Esq. Bank, Banbury.
Glossop, F. H. N. Esq. Isleworth.
Godlee, Riekman, Esq. 4, Qucen-square.
Gomonde, W. H. Esq. 26, Promenade, Cheltenham.
Gordon, P. L. Esq. Craigmyle.
Gough, Thomas, Esq. Kendal.
Gough, Capt. the Hon. G. S., F.L.S. \&c. 24, Upper Brook-street, Grosvenor-square.
Gould, John, Esq. F.R.S., L.S., Z.S. \&c. Broad-street, Golden-square.
Gourlic, William, Esq. 8, South Frederiekstreet, Glasgow.
Gower, A. Lewis, Esq. F.G.S. \&c. 31, Finsbury-square.
Graham,'Thomas, Esq. M.A., F.R.S., G.S. \&c. Prof. of Chem. Univ. Coll. London, 9, Tor-rington-square.
Gratton, Joseph, Esq. 94, Shorediteh.
Gray, I. E. Esq. F.R.S., G.S. \&c. British Museum.
Gray, W. Esq. F.G.S. \&c. York.
Gray, C. Esq. Bilston.
Gray, John, Esq. New-strect, Dudley.
Greenough, G. B. Esq. F.R.S., G.S. Grove House, Regent's-park.

Griffith, R. Esq. F.G.S. \&c. Dublin.
Grundy, Thomas, Esq. Northampton.
Guest, Sir J. J. Bart. F.R.S., G.S. \&c. 8, Spring-gardens.
Guise, W. V. Esq. F.G.S. \&c. Elmore-eourt, near Gloueester.
Guthree, M. G. Esq. 19, Saville-row.
Gwilt, George, Esq. Union-street, Southwark.

Haines, C. Y., M.D. 26, Warren-place, Cork.
Hall, Charles, Esq. Ansty.
Hall, Henry, Esq. Alton, Hants.
Hall Library, Albany, New York, U. S.
Hall, Robert, Esq. 8, Dean's-yard, Westminster.
Hall, William, Esq. Feversham, Kent.
Halle, University, Library of
Hambrough, B. J. Esq. F.G.S. \&e. Niton, Isle of Wight.
Hamilton, E. M.D., F.L.S. 22, Graftonstreet, Bond-street.
Hamilton,W. J. Esq. M.P. Sec. G.S.Cheshamplace, Pimlico.
Harbin, Rev. Chas., M.A. Hindon, Wiltshire.
Harmar, Riehard, Esq. 9, Park-street, Bath.
Harris, J. H. Esq. Deddington.
Harris, W. Esq. Charing, Kent.
Harrison, Dr. W. Hume-street, Dublin.
Harvey, Alexander, Esq. 4, South Wellingtonplace, Glasgow.
Harvey, W. H., M.D., Trinity College, Dublin.
Hastie, Honorable Alexander, Lord Provost of Glusgow.
Hastie, James, Esq. F.G.S. \&e. Grove-hillterraec, Camberwell.
Hastings, The Marehioness of, Efford House, Lymington, IIants.
Hawkes, Rev. Henry, B.A., F.L.S. \&e. Jubilec-terraee, Southsea, Portsmouth.
Hawkins, M. R. Esq. 7, Russell-square.
Hawley, Richard, Esq. East Leake, Nottingham.
Haworth, Thomas, M.D. Bolton.
Haycock, William, Esq. King-street, Huddersfield.
Head, Mrs. J. Ipswich.
Heathoote, Thomas, Esq. Sidmouth.

Heddle, Robert, Esq. Kirkwall, Orkney Islands.
Henslow, Rev. Jno. S., F.L.S., G.S. \&C.P.S. Prof. Bot. Camb. Hitcham, Bildcston, Suffolk.
Hepworth, Rev. R. Tewkesbury.
Herbert, J. M. Esq. F.G.S. \&c. The Priory, Bodmin.
Herbert, Thomas, Esq. Park, Nottingham.
Heywood, James, Esq. F.R.S., G.S. \&c. Athenæum.
Hickes, Thomas, Esq. Gloucester.
Higgins, E.T. Esq. 25, Spurrier Gate, York.
Hollis, W. M. Esq. Lewisham.
Holmes, Gcorge B. Esq. Horsham.
Holroyd, Rev. Jno. Leeds, Yorkshire.
Hone, Joseph, Esq. M.R.D.S. 72, Harveststreet, Dublin,
Hony, Rev. W. E., F.G.S. \&c. Archdeacon of Sarum, Baverstock, near Salisbury.
Hopkins, W. Esq. M.A., F.R.S., G.S. Cambridge.
Hooker, J. D., M.D., F.L.S. \&c. Kew.
Horner, Leonard, Esq. F.R.S., G.S. Rivermede, Hampton Wick.
Howitt, Thomas, Esq. Lancaster.
Hubbard, George, Esq. Bury St. Edmunds.
Hubbard, Jno. R. Esq. Leeds, Yorkshire.
Hudson, Robert, Esq. F.R.S., G.S. Clapham.
Hughes, Rev.J., M.A.W ombourn, Staffordsh.
Hull, W. D. Esq. F.G.S. \&c. Woodlam, Rostrevor, Ireland, and Hatch-street, Dublin.
Hunt, Z. D. Esq. F.G.S. Aylesbury.
Hunter, Rev. S. Wolverhampton.
Huntingdon, F. Esq. Hull.
Hutehins, Miss, Alton, Hants.
Hutton, R. Esq. F.G.S., M.R.I.A. \&c. Putney Park.

Ibbetson, L. L. B. Esq. K.R.E., F.G.S. \&c. Clifton House, Old Brompton.
Illingworth, Rev. E. A. 18, Chester-street, Grosvenor-place.
Illingworth, R. S. Esq. 6, Connaught-square.
Ilott, J. W. Esq. Bromley, Kent.
Image, Rev. Thomas, M.A., F.G.S. \&c. Whepstead, near Bury.
Inglis, James, M.D. \&c. Halifax.
Inskipp, James, Esq. Godalming.

James, Captain H., R.E., F.G.S. \&c. Geologieal Survey, Craig's-court, Charing Cross.
Jameson, John, Esq, 33, Blacket-street, Newcastle-on-Tyne.
Jackson, Miss, Manor House, Lexden, near Colehester.
Jackson, John, Esq. Dunstable.
Jeffreys, J. G. Esq. F.R.S., L.Sc Swansea.
Jcnkyn, Rev. T.W., D.D., F.G.S. \&c. Coward College, Torrington-square.
Jennings, F. M. Esq. M.R.I.A. \&c. Cork.
Jewsbury, F. Esq. Gloueester.
Johncs, J. Esq. Dolan Cothi, Llandovery, North Wales.
Johnston, Prof. J. W., F.R.S. L. and E. Durham.
Johnston, Dr. George, Berwick-on-Tweed.
Jones, Capt. T., M.P., F.L.S., G.S. \&c. 30, Charles-street, St. Jaunes's.
Joyce, Thomas, Esq. F.G.S. \&e. University College, Gower-street.
Joyce, A. Esq. University College, Gower-st. Jukes, J. B. Esq. M.A., F.G.S. \&c. Geological Survey, Craig's-court, Charing Cross.
Jury, S. II. Esq. Cotham, Bristol.
Kay, James, Esq.University Collegc, London. Kay, Robert, Esq. Bolton.
Kay, William, Esq. F.L.S. \&c. Royal Marine Barraeks, Stonehouse, Plymouth.
Keele, J. R. Esq. Portland-st. Southampton.
Kelaart, - M.D. Fort Clarenee, Roehester.
Kell, William, Esq. Gateshead, near New-castle-on-Tyne.
Kenyon, the Hon. Mrs., Parade, Shrewsbury. Kenyon, J. R. Esq. 7, Russell-square.
King, W. Esq. Collingwood-st. Newcastle-on-Tyne.
Knapp, Charles Esq. 5, Norfolk-crescent, Hyde Park.
Köninck, L. de, Esq. Liégc.
Krantz, M. Berlin.
Laing, A. L. Esq. Colchester.
Landseer, George, Esq. Cunningham-place, St. John's Wood.
Langhorn, John, B. Esq. Richmond, Yorkshire.

Langstaff, J. Esq. 9, Cambridge-square.
Lankester, Edwin, M.D., F.R.S., L.S. 22, Old Burlington-street.
Lawrence, John, Esq. F.G.S. Elton, Oundle.
Leaby, Michael, M.D. Bridgend, Glamorganshire.
Leckenby, Jno. Esq. Searborough.
Leeks, E. F. Esq. F.L.S. \&e. 65, Chester-sq.
Lee, John, LL.D., F.R.S., R.A.S. \&c. 5, College, Doctor's Commons.
Lee, John, Esq. 2, Grove-villas, Camberwellgrove.
Lee, Jno. Edward, Esq. The Priory, Caerleon, Monmouthshire.
Lee, Henry M. Esq. Whittlesea.
Leeson, E, M.D. Greenwich.
Leifehild, John R. Esq. 6, Great Camdenstreet, Camden Town.
Lemon, Sir C. Bart. F.R.S., G.S. \&c. 40, Charles-street.
Leslie, James, Esq. Chanonry, Old Aberdeen.
Lestourgeon, Charles, Esq, M.A. Trinitystreet, Cambridge.
Llewelyn, J. D. Esq. F.R.S. L.S. \&c. Pentlegare, Swansea.
Llewellen, W. jun. Esq. F.G.S. \&c. Pontypool.
Lcwis, Augustus, Esq. B.A. F.G.S. \&c. 18, Stratford-place, Cavendish-square.
Library of the University, King's College, Aberdeen.
Liddell, Andrew, Esq. Plean House, Glasgow.
Liddell, Lieut. J. R.E. Portsmouth.
Lidstone, Robert, Esq. Plymonth.
Lingard, Jno. R. Esq. Greenbank Housc, Stockport.
Lingwood, R. M. Esq. M.A., F.L.S. \&e. Syston, near Ross, Hereford.
Lister, J. J. Esq. F.R.S. \&e. Upton, Essex.
Lister, Jno., M.D., 20, Weymouth-street, Portland-plaee.
Lister, Rev. William, Bushbury, Staffordshirc.
Literary and Philosophical Socicty of Sheffield.
Litcrary and Philosophical Society of Neweastìe.
Literary and Seicntific Institution, Frome, Somersetshirc.

Lloyd, John, Esq. 77, Snow-hill.
Lloyd, Dr. F.G.S. \&c. Stank-hill, near Warwick.
Loftus, W. K. Esq. Stand House, Newcastle-on-Tyne.
Lomax, William G. Esq. Gilnow, Bolton-leMoors.
Long, H. W. Esq. Rood Ashton, Trowbridge.
Lonsdale, W. Esq. F.G.S. Keynsham, near Bath.
Lowry, J. W. Esq. F.R.G.S. 45, Robertstrect, Hampstead-road.
Lubbock, Sir John W. Bart. M.A., F.R.S., L.S., Mansion-house-street.

Ludlow Natural History Socicty.
Lycll, Sir C. M.A., F.R.S., L.S., G.S. \&c. 11, Harley-street, Cavendish-square.

Mackeson, Henry B. Esq. F.G.S. \&c. Hythe, Kent.
Maclaren, Charles, Esq. F.R.S.E., G.S. \&c. Northumberland-street, Edinburgh.
Maclean, William C. Esq. Woodbridge.
Macredic, P. B. M. Esq. Perceton Irvine, North Britain.
Magendie, A. Esq. F.R.S., G.S. \&c. Hedingham Castle, Castle Hedingham, Essex.
Major, Charles, Esq. 21, Billiter-street.
Mansell, Jno, Esq. Whatcomb House, Blandford.
Mantell, G. A. Esq. LL.D., F.R.S., G.S. \&e. 19, Chester-squarc, Pimlico.
Marsh, John, Esq. Burnt Trec, near Dudley.
Marshall, James G. Esq. M.P. Leeds.
Marshall, Matthew, Esq. Bank of England.
Martin, P. J. Esq. F.G.S. \&c. Pulborough, Sussex.
Martin, P. Esq. Reigate.
Marrat, F. P. Esq.9, Lower Arcade, Liverpool.
Masters, Peter, Esq. Reigate.
Matthieson, James, Esq. 82, Bishopsgatestreet Within.
Mathews, W. jun. Esq. Park Hall, near Kidderminster.
May, Charles, Esq. Ipswich.
McAndrew, R. Esq. F.G.S. \&c. Liverpool.
McDermott, G.A. Esq.F.G.S. \&c. Chesterton Hall, near Newcastle-under-Line.
McIntosh, John, Esq. Milton Abbey.
Meadc, Rev. J. R. Castle Cary.

Mechanics' Institution, Lewes.
Mechanics' Institution, Llandilo.
Mechanical and Scientific Institution, Morpeth.
Mechanics' Institution, Bolton.
Medlock, Henry, Esq. Royal College of Chemistry, Hanover-square.
Melvillc, Dr. A. G. British Museum.
Meryon, Edward, M.D. 14, Clarges-street.
Miller, George, M.R.C.S.E. \&c. Emsworth.
Miller, Hugh, Esq. Edinburgh.
Mills, Mrs. Lexden Park, near Colchester.
Mitchcll, John, Esq. Church-strect, Wolverhampton.
Mitchcll, J. Esq. F.R.S. Mauchline.
Moggridge, M. Esq. The Willows, Swansea.
Montague, Lord Robert, Kimbolton Castle.
Moorc, J. C. Esq. Sec. G. S. \&c. 4, Hyde Park Gate, Kensington.
Morgan, James, Esq. 22, Fenton-square, Huddersfield.
Morgan, Rev. William Leigh, Cardiff.
Morgan, William, Esq. Swansea.
Morris, John, Esq. F.G.S. Kensington.
Morris, John, Esq. Belvedcre, Bath.
Morson, T. N. Esq. Southampton-row, Russell-squarc.
Morton, J. Howard, M.D. Southampton.
Morton, J. Highfield, Esq. 88, Grove-street, Liverpool.
Moslcy, Sir Oswald,Bart.,D.C.L.,F.L S.,G.S. \&c. Rolleston Hall, Burton-on-Trent.
Murchison, Sir R. I., G.C.H.S., M.A., F.R.S., G.S., L.S. \&c. L6, Belgravesquare.
Murdock, William, M.D. 320, Rotherhithe.
Murray, William, Esq. Monkland, Glasgow.
Museum of Economic Geology, Craig'scourt, Charing Cross.

Natural History Society, Manchester.
Naturforschende Gesellschaft.
Neale, Edward V. Esq. 66, South Audley-st.
Neale, T. C. Esq. Chelmsford.
Neeld, Joseph, Esq. M.P., F.L.S. \&c. Grittleton House, Chippenham.
Neison, Francis G. P. Esq. F.L.S. \&c. 3A, St. James's-square.
Nelson, Capt. R. I., R.E. 7, Albert-street, Plymouth.

Neville, R. J. Esq. F.G.S. \&c. Llangennick Park, Swansea.
Newman, Edward, Esq. F.L.S. \&c. 9, Devon-shire-strect, Bishopsgate-strcet.
Nichol, Prof. I. P. Glasgow.
Nicol,J.Esq.F.R.S.E. \&c. Gcological Society.
Noble, W. H. Esq. Lieut. R.E. Chatham.
Norfolk and Norwich Litcrary Institution.
Northampton, The Marquis of, F.R.S., F.S.A., L.S., G.S. \&c. 145, Piccadilly.

Norton, J. H., M.D. \&c. Shirley, near Southampton.
Norris, Henry, Esq. F.R.C.S. \&c. South Petherton.
Nunncley, Thomas, Esq. Lceds.
Nunn, J. Esq. East Bcrgholt, Suffolk.
O'Gorman, George, Esq. F.G.S. \&c. 56, Baker strcet, Portman-squarc.
Oldham, Prof. F.G.S. \&c. 5, Trinity College, Dublin.
Olivicr, Lieut.-Col. H. S. Pottern Manor, Devizes.
Ormerod, G. W., Esq. M.A., F.G.S. \&c. Manchester.
Onslow, M.E. Esq. Woodbridge House, ncar Guildford, Surrcy.
Owen, Prof. R., M.D., LL.D., F.R.S., L.S., G.S., \&c. Royal Collegc of Surgeons.

Paine, J. M. Esq. Farnham.
Papillon, Rev. J., Lexden.
Parry, Thomas G. Esq. F.G.S. Highnam Court, near Gloucester.
Pattisson, Mrs. Jacob, Witham, Essex.
Pearson, Sir Edwin, K.H., M.A., F.R.S. \&c. 5, Gloucester-terrace, Regent's Park.
Pcekover, Algernon, Esq. F.L.S. Wisbcach.
Pcnny, Charles, Esq. 19, Barrington-road, Brixton, Surrey.
Pengclly, William, Esq. Torquay.
Penruddock, Charles, Esq. Baverstoke House, ncar Salisbury.
Percy, I., M.D., F.R.S. \&c. Birmingham.
Perkins, Rev. R. B. Wooton-under-Edge, Glouccstershire.
Pcrry, George, Esq. 39, Spencer-street, Northampton-square.
Phillips, Prof. John, F.R.S., G.S. \&c. York.
Philosophical Socicty of Glasgow.

Philosophieal Society, Leicester.
Philpot, Miss, Lyme Regis.
Piekering, John, Esq. 117, Lower Thames-st.
Pickford, J. Esq. Brighton.
Pidgeon, Jonathan, S.Esq.33, Myddelton-sq.
Pigg, Thomas, jun., Esq. Newcastle.
Pitts, R.C. Esq. 8, St. Giles’s-street, Norwich. Plant, James, Esq. 34, Sparkense-street, Leicester.
Plomley, F., M.D., F.L.S. \&c. Maidstone.
Pollexfen, Rev. J. H., M.A. 4, Bedford-place, Clapham Rise.
Portloek, Lieut.-Col., R.E., F.R.S., G.S., \&c. Portsmouth.
Potts, Thomas, Esq. Hampton House, Torquay.
Powles, T. W.Esq. York-place, Portman-sq.
Pratt, S. P. Esq. F.R.S., G.S. \&e. 55, Lin-coln's-inn-fields.
Preston Literary and Philosophical Institution.
Prestwich, Joseph, jun. Esq. F.G.S. Marklane.
Prevost, J. L. Esq. Tr. G.S. \&c. 3, Suffolkplace, Pall Mall, East.
Pritchard, Rev.C., M.A., F.R.S.\&c.Clapham.
Proudfoot, Thomas, M.D. Kendal.
Prout, Rev. E., F.G.S. \&e. 12, Champion Grove, Camberwell.
Provis, William A. Esq. The Grange, Ellesmere, Salop.
Pym, John A.Esq. The Hazells, Biggleswade.

Quekett, John, Esq. Royal College of Surgeons.

Raban, Major, 33, Petersburgh-place, Bayswater.
Radley, William C. Esq. M.R.C.S.L. Newton Abbot, Devonshire.
Ralph, M. Esq. Bernard-street, Clifton.
Ramsay, Prof. A. C., F.G.S. \&c. Gcological Survey, Craig's-court, Charing Cross.
Ramsey, Sir James, Bart. Banff.
Ramsey, William, Prof. of IHmanity, University of Glasgow.
Randolph, Rev. J. H., M.A., F.G.S. Sanderstead, Croydon.
Rankin, R., M.D. Carluke, Glasgow.

Ransome, Mrs. Robert, Ipswich.
Ransome, George, Esq. F.L.S. \&c. Ipswieh.
Raper, W. A., M.D., Parade, Portsmouth.
Rawson, J. Esq. Green Ryde, near Halifax, Yorkshire.
Reade, Rev. I. B., M.A., F.R.S. \&c. Stone, near Aylesbury, Bueks.
Redmond, M. Esq. 79, Hatton Garden.
Reeve, Lovell, Esq. A.L.S. \&c. King Williamstreet, Strand.
Reid, Professor John, St. Andrews, N. B.
Richardson, W. S., F.G.S. \&c. 3, Tanfieldcourt, Temple.
Richardson, William, Esq. F.G.S. \&c. 47, Bedford-row.
Richardson, William, Esq. Southeram, near Halifax.
Robertson, Alex. Esq. F.G.S. \&c. Woodside Cottage, Elgin, N. B.
Roddam, Jonathan, Esq. Newhouse, Weardale, Durham.
Rogers, Prof. Henry D., F.G.S. \&c. Philadelphia, U. S.
Rogerson, John, Esq. Newcastle-on-Tyne.
Roper, F. C. S. Esq. 9, Clapton-square, Haekney.
Rothery, H. C. Esq. M.A., F.L.S. 10, Strat-ford-place.
Roots, William, M.D., F.S.A. \&c. Surbiton, Kingston, Surrey.
Rofe, John, Esq. F.G.S. \&c. Preston.
Rose, C. B. Esq. F.G.S. \&c. Swaffham.
Rosling, A. Esq. Camberwell-terrace, Camberwell.
Round, George, Esq. Colchester.
Royal Agricultural Coll. Library, Cirencester.
Royal College of Surgeons.
Royal Geological Soeiety of Cornwall, Penzancc.
Royal Institution, Liverpool.
Royal Institution of South Wales, Swansea.
Royal Military College, Sandhurst, Bagshot.
Ruskin, John, Esq. F.G.S. \&c. Denmarkhill, Camberwell.
Ruthven, John, Esq. Kendal.
Rutter, John, Esq. Ilminster.
Sabine, Lieut.-Col. R.A., F.R.S., G.S. Athenæum Club.
Salmon, J. D. Esq. Godalming.

Salter, J. W. Esq. F.G.S. \&e. Museum of Economic Geology, Craig's-court, Charing Cross.
Sanders, W. Esq. F.G.S. \&c. Clevedon, Bristol.
Sandwith, Thos. M.D. Beverley, Yorkshire.
Saunders, G. H. Esq. F.G.S. \&c. Cowleystreet, Westminster.
Saunders, T. W. Esq. 6, Charing Cross.
Saunders, W.Wilson, Esq. F.L.S. \&c. Lloyds.
Saxby, S. M. Esq. Mountfield, Bonchurch, Isle of Wight.
Sayle, George, Esq. Kingstaith-square, Lynn, Norfolk.
Scott, J. B. Esq. M.A. Bungay, Suffolk.
Seott, Dr. W. R. St. Leonards, Exeter.
Scott, Lieut. R. E. 7, Dundas-terrace, Woolwich.
Sedgwick, Rev. Adam, M.A., F.R.S., G.S. \&c. Cambridge.
Selwyn, A. R. Esq. Gealogical Survey, Craig's-court, Charing Cross.
Sharp, Samuel, Esq. Stamford.
Sharpe, Daniel, Esq. F.L.S., G.S. \&c. 2, Adelphi-terrace.
Sharpe, John, Esq. Culverden Castle, Tonbridge Wells.
Shaw, John, M.D., F.G.S., \&c. Hop House, Boston, Lincolnshire.
Sheppard, T. Byard, Esq. Selwood Cottage, Frome.
Sims, W. D. Esq. Ipswich.
Sinclair, Lady, Pilmuir, Torquay.
Sismonda, M. Angelo, Prof. of Mineralogy, Turin.
Sissons, Richard, Esq. Huddersfield.
Simpson, Samuel, Esq. The Grcaves, Lancaster.
Sloper, George E. Esq. Devizes.
Smith, James, Esq. F.R.S.L. \& E., G.S. Jordan hill, near Glasgow.
Smith, J. Toulmin, Esq. F.G.S. \&c. 8, Serjeants' Inn, Fleet-street.
Smith, J. Orton, Esq. 8, Serjeants' Inn, Fleet-strect.
Smith, W. H. Esq. 4, Devonshire-street, Queen's-square.
Smith, W. W. Esq. M.A.
Smith, Rev. J. Pye, D.D., LL.D., F.R.S., G.S. \&c. Homerton College.

Smith, Captain Robert, Windy Arbour, Dundrum.
Smith, Samuel, Esq. Wisbeach.
Smyth, W. H. Esq. South Elkington, Louth.
Sopwith, T. Esq. F.R.S., G.S. \&c. 1, Chapelplace, Duke-street, Westminster.
Sorby, H. C. Esq. Woodbourne, Attercliffe, near Sheffield.
Sowerby, James de Carle, Esq. F.L.S. \&c. Royal Botanic Gardens, Regent's Park.
Sowerby, George B. jun. Esq. F.L.S. \&c. 70, Great Russell-street, Bloomsbury.
Spence, W. Esq. Pres. Ent. Soc. F.R.S., L.S. \&c. 18, Lower Seymour-street.
Spencer, - Esq. Bowood, Wilts.
Spencer, John, Esq. Calnc, Wilts.
Spooner, E. O. Esq. Blandford, Dorsetshire.
Spraggc, W. K. Esq. Torquay,
Spratt, Thomas, Esq. Com. R.N., F.G.S. \&c. Tynemouth, Devon.
Spriggs, William, jun. Esq. Broad-street, Worcester.
Stamford Institution.
Stansfield, James, Esq. Halifax.
Stark, W. Esq. F. G.S. \&c. Norwich.
Stavordale, Lord, 31, Old Burlingtonstrcet.
Steel, C. Wilson, Esq. Lewisham.
Steelc, James, Esq. Rector of the Royal Academy, Inverness.
Stevens, II. Esq. The Shaws, Matlock, Derbyshire.
Stevens, H. Esq. F.G.S. \&c. Duffield, near Derby.
Stewart, R. Esq. Torquay.
Stokes, Charles, Esq. F.R.S., L.S., G.S. \&c. 4, Verulam-buildings, Gray's Inn.
Strickland, H. E. Esq. M.A., F.G.S. \&c. The Lodge, Tewkesbury.
Stuchbury; Samuel, Esq. A.L.S., F.G.S. \&c. Bristol.
Stutfield, W. Esq. F.G.S. \&c. 1, Montagueplace, Russell-square.
Sunderland Corporation Museum.
Sunderland Subscription Library.
Surrey Nat. Hist. Society, Guildford.
Swiney, John, M.D. Westall House, Cheltenham.

Talbot, C. R. M., Esq. M.P., F.R.S. \&c. Margam, Glamorgan.
Tanner, William, Esq. Bristol.
Tate, George, Esq. F.G.S. \&c. Alnwick.
Taylor, James, Esq. Marsden, near Huddersfield.
Taylor, John, Esq. F.R.S., L.S. \&c. Sheffield House, Church-street, Kensington.
Taylor, Richard, Esq. Penmaer, Falmouth.
Taylor, S. Watson, Esq. Urehfont, Devizes.
Taylor, Henry, Esq. Brunswick House, Brixton.
Teale, T. P. Esq. F.R.C.S.E. Leeds
'Tennant, Jas. Esq. F.G.S. \&c. 149, Strand, (two copies).
Teschemacher, Frederick, Esq. 4, Park-terrace, Highbury.
Thomas, W. L. Esq. Lieut. R.N. H.M.S. Mastiff.
Thompson, Miss S. Stamford.
Thomson, Alexander, Esq. F.R.S.E. Banchory House, Aberdeen.
Thomson, J. Esq. F.R.S., G.S. \&c. Primrose, near Clitheroe.
Thornewill, Robert, Esq. Burton-on-Trent.
Thornton, Rev. John, M.A., F.G.S, \&c. Kimbolton.
Thorpe, Rev. W. M.A., F.G.S. \&c. Wormesley Vicarage, Pontefract.
Thurlow, Right Hon. Lord, Ashfield Lodge, Stowmarket, Suffolk.
Tillard, Miss, Hastings.
Tite, W. Esq. F.R.S., S.A., G.S. \&c. 25, Upper Bedford-plaee, Russell-square.
Tite, S. C. Esq. Towcester, Northamptonshire.
Todd, R. B., M.D., F.R.S. \&c. 3, New-street, Spring-gardens.
Tomes, R. F. Esq. Welford, near Stratford-on-Avon.
Tomkins, Chas. M.D., F.L.S. \&e. Abingdon. Torquay Natural History Soeiety.
Tovey, R. Esq. 19, Blechynden-terrace, Southampton.
Townsend, Mrs. E. M. Spring Field, Norwood.
Trimmer, Joshua, Esq. F.G.S.\&c. Magdalenstreet, Norwieh.
Turner, H. N. Esq. 1, Upper Belgrave-place. Tweedy, M. Esq. Alverton, Truro.

Twining, W., M.D., F.G.S. \&c. 13, Bedfordplace, Russell-square.
Tylor, Alfred, Esq. F.G.S. Warwick-lane, Newgate-street.

University of Glasgow.
University Library, St. Andrews,
Upsala University Library.
Vallance, Edmund, Esq. Brighton.
Vetch, Captain J. R.V., F.R.S., G.S. \&c. Truro.
Vint, H. Esq. Colchester.
Vint, Robert, Esq. Sunderland.
Vienna, Imperial Library of
Vivian, J. H. Esq. M.P., F.R.S., G.S. \&c. Swansea.
Von Buch, His Excellency M. Berlin.
Wainwright, H. M. Esq. Dudley.
Waldron, James, Esq. Hartswell, Wiveliscombe, Somersetshire.
Walker, David, M.A., F.G.S. \&c. Agricultural College, Maidstone.
Walker, Charles, Esq. Collingwood, Torquay.
Waller, Edward, Esq. Finnoe House, Burrisokane, Ireland.
Waller, Edw. Esq. Lessenderry, Aughnacloy. Walton, William, Esq. London Dock Head.
Ward, N. B. Esq. F.L.S. \&c. Wellclose-sq.
Waring, Alfred, Esq. Hallenbrook House, near Bristol.
Watts, John King, Esq. St. Ives, Huntingdon.
Watts, S. T. Esq. Weymouth.
Wauehope, Captain, R.N. Daere, Penrith.
Weiss, Prof. University, Berlin.
Welsh, Robert, Esq. IIuddersfield.
Westall, Edward, Esq. Croydon.
Wetherell, N. T. Esq. F.G.S. \&e. Highgate.
Whatman, J., Esq. M.A., F.R.S. Vinters Boxley, near Maidstone.
Whewell, Rev. William, B.D., F.R.S., Hon. M.R.I.A., F.S.A., F.G.S., F.R.A.S. Mast.Trin. Coll. Cainb. Lodge, Cambridge.
White, Aifred, Esq. F.L.S. \&c. 19, Tindallplace, Islington.
White, J. G., M.D. 18, Wharton-street, Pentonville.
White, H. C. Esq. F.G.S. St. Heliers, Jersey.
Whiting, J. B. Esq. King's Lynn, Norfolk.

Whitmore, Wm. Esq. 2, Basinghall-street. Widdrington, S. E. Capt. R.N., F.R S., G.S. \&c. Newton Hall, Felton.

Wiggins, John, Esq. F.G.S. 30, Tavistock-pl.
Willcock, J. W. Esq. 6, Stone-buildings, Lincoln's Inn.
Williams, Rev. D. F.G.S. \&c. Bleadon, near Wells, Somerset.
Williams, Dr. Swansea.
Wills, William Esq. Edgbaston, Birmingham.
Wilson, D. Esq. 5, St. Nicholas-street, Aberdeen.
Wilson, Prof. John F.R.S.E., F.G.S. Royal Agricultural College, Cirencester.
Wilson, Jas. Esq. Wadham Coll. Oxford.
Wilson, J. H. Esq. Staveley.
Wilson, Edward Esq. F.G.S. \&c. Lydstip House, near Tenby, S. Wales.
Wilson, Hon. and Rev. R., F.G.S. \&c. Wymondeham, Norwich.
Wilson, Sumner, Esq. 1, Cranbury-terrace, Southampton.
Wilson, William, Esq. Oak Hill, Torquay.
Wilton, John W. Esq. Gloucester.
Witts, Rev. E. F. Stanway, ncar Winchcomb.
Winstone, Benjamin, M.D. 20, Bouvcriestrcet, Fleet-street.

Wintle, G.S. Esq. East Gate-st. Gloucester. Wollaston, Miss H. Clapham-common.
Wolley, Chas. Esq. King's Coll. Cambridge. Wood, Mrs. Col. Rectory House, Wrekham, Bishops Witham.
Wood, S. A.M., M.D. \&c. Avenue House, Bandon.
Wood, Edward, Esq. Richmond, Yorkshire.
Wood, S. V. Esq. F.G.S. \&c. 28, Fortessterrace, Kentish-town.
Woodd, C. H. L. Esq. F.G.S. F.S.A. \&c. Hillfield, Hampstead.
Woods, S. jun. Esq. 9, Tower Chambers, Liverpool.
Woodward, Charles, Esq. F.R.S. 10, Comp-ton-terrace, Islington.
Worcestershire Natural Hist. Soc. Foregate, Worcester.
Wright, Thomas, M.D. Cheltenham.
Wyke, Wm. Beadon, Esq. Churchstanton, Honiton, Devon.

Yates, James, Esq. M.A., F.R.S., L.S., G.S. \&c. Lauderdale House, Highgate.
Young, J. Forbes, M.D., F.L.S. \&c. Upper Kennington-lanc.

$$
1
$$

,
$=3$ SEr 1980

[^0]: * Cuvier, Leçons d'Anatomịe Comparée, tom. i (1799), p. 212.

[^1]: * Peters, Observationes ad Anatomiam Cheloniorum, 1838.
 \dagger Ueber die Entwickelung der Schildkröten, 4to, 1848, p. 122.

[^2]: * Tom. v, pt. 2, pl. xii and xiii.
 + Bridgewater Treatise (1836), p. 256.
 \ddagger Ossemens Fossiles, 4 to, tom. v, pt. ii, p. 249.
 § Bridgewater Treatise, p. 256.
 $\|$ Proceedings of the Geological Soeiety of London, vol. iii, pt. ii, p. 570, December 1, 1841.

[^3]: * Tom. cit., p. 234. This structure is not, however, peculiar to the genus Emys; in the carapace of the Chelone caouanna, in the Museum of the Royal College of Surgcons, the seventh neural plate is separated from the eighth by the junction of the expanded cxtremity of the seventh rib on one side with that of the opposite rib, and the eighth neural plate from the ninth by the same modification of the cighth pair of ribs. A similar modification may also be seen in the carapace of the Trionyx IIenrici, T. XVI.

[^4]: * Organic Remains, vol. iii, p. 268, pl. xviii, fig. 2.
 \dagger Ossemens Fossiles, tom. v, pt. ii, p. 235.
 \ddagger Tom. cit., pl. xv, figs. 14-15.
 § Tom. cit., p. 235.

[^5]: * Ossem. Fossiles, tom. v, pt. ii, pl. xi, fig. 2.

[^6]: * In an Limys with a carapace seven inches in length, the corresponding extremitios of the ribs would have been united together by the laterally-extended ossification.
 \dagger Ossemens Fossiles, tom. v, pt. 2, pl. xv, fig. 16.

[^7]: * Procecdings of Geological Society, December 1, 1841, p. 570. Report on British Fossil Reptiles, Trans. Brit. Association, 1841, p. 178.

[^8]: * Sir C. Lyell alludes to the Chelonites of Harwich in his 'Elements of Geology :' "This formation is well seen in the neighbouring cliffs of Harwich, where the nodules contain many marine shells, and sometimes the bones of Turtles." (Vol. ii, p. 337.)

[^9]: * Proceedings of the Geological Society of London, December 1, 1841, p. 572.
 + Ibid., p. 574.

[^10]: * Mr. Gray, for example, includes the Chelone virgata and Chelone maculosa of Dumeril and Bibron as varieties of the Chelone mydas.

[^11]: * Annales du Muséum d'Histoire Naturelle, tom. xiv.
 \dagger Erpétologie Générale, 8 vo, tom. ii, p. 461.
 \ddagger 'This claraeter is well exemplified in the Marehioness of Hastings's unique and beautiful speeimen of the Triomyx rivosus, T. XVILI A.

[^12]: * This is quite a distinct species from the Trionyx spiniferus of Lesueur.

[^13]: * "Mais je n’ai rien trouvé dans ses débris qui m’autorisât à en fixer les earaetères spéeifiques." (Ossemens Fossiles, tom. v, pt. ii, p. 223.)
 + Cuvier, tom. eit., pp. 225, 227.
 \ddagger The skull of the Triomyx from this loeality showed a slightly different profile from that of any of the existing speeies.
 § Bulletin de la Soeiété Philomathique, 1821.
 || Annales du Muséum, tom. xiv, pl. 4, 1809.

[^14]: * Geoffroy, loc. cit., pl. 2, fig. B, o.
 \dagger Ibid., pl. 3, fig. B, o.
 \ddagger Ibid., pl. 4, fig. B, o.
 § Cuvier, Ossemens Fossiles, tom. y, pt. ii, pl. 12, fig. 46.
 \| Lioc. cit.

[^15]: * Loc. cit., pl. 12, fig. 4.
 + Loc. cit., pl. 12, fig. 4.

[^16]: * Erpétologie Générale, 8vo, 1835, tom. ii, p. 232.

[^17]: * Geological Proceedings, December 1, 1841.
 \dagger Ossemens Fossiles, tom. v, part iv, pl. 15, fig. 12.
 \ddagger Organic Remains, vol. iii, pl. 18, fig. 2.

[^18]: * Ed. 1824, vol. v, part ii, pl. 15, fig. 12.

[^19]: * The sternal bones appear liable to occasional eurious anomalous variations. Thus, while in Platemys there is a perfeet pair of intercalated bones between the hyosteruals and the hyposternals, and in the present species an approach to a similar interpolation, we find, on the contrary, in Gymnopus, a genus of Trionychidre, the only skeleton of which in this country I have now in my possession, the hyosternals and hyposternals constitute but a single bone on each sidc, a peculiarity which I believe to be perfectly unique in the whole of the Chelonian order. [T. B.]

[^20]:

[^21]: * Myopsidæ; from $\mu \nu \omega$ claudo, o廿єs visus.
 \dagger Oigopsidx; from öt $\boldsymbol{\dagger} \omega$ aperio, o $\psi \iota$ visus.

[^22]: * In M. de Blainville's "Mémoire sur l'Animal de la Spirula et sur l'Usage du Siphon des Coquilles Polythalames," the siphuncle is described as a solid tendinous prolongation of the retractor museles, by means of which the animal is enabled to withdraw the cephalic mass within a cavity formed by the anterior extremity of the mantle, and thus to regulate the specific gravity of the body. It appears, however, from Professor Oren's examination of two specimens of S. Peronii (fragilis), captured and brought home by Captain Sir Edward Belcher (see Zoology of the Voyage of the Samarang), that the soft or membranous siphon is in reality a tube continued from the calcareous siphon and the last chamber of the shell, through a semicircular apcrture in the mantle, into the visceral cavity.
 \dagger M. d'Orbigny, after referring to these means of escape in the Sepiæ, says (Moll. Viv. et Foss., vol. i, p. 134), that he is far from believing that the faculty is enjoyed by evcry specics; and that, in fact, if it exists among the Sepidæ, it is at the least doubtful among the othcr Cephalopods, who possess but a small quantity of the liquid, which they only expel when dying.

[^23]: * It is foreign to the present purpose to enter into the question as to the parasitism of the Ocy thoe ; the experiments of Madame Jeannette Power, eonfirmed to a great extent by the observations of M. Sander Rang and M. d'Orbigny, and more reeently by those of Mr. Adams, during the voyage of II.M.S. Samarang, are generally eonsidered as removing all doubt as to that animal being the fabrieator of the shell in whieh it is found ; and the theory of parasitism is now rejeeted by nearly all naturalists. A detailed aceount of the faets aseertained and reeorded by Madame Power and M. Rang will be found in M. Rang's Mémoire, published in Guerin's 'Magasin de Zoologie,' and in Madame Power's 'Observations on the Poulpe of the Argonaut,' translations of whieh are published in the 'Mag. Nat. Hist.,' new series, vols, iii and iv. The observations of Mr. Adams, published in the 'Zoology of the Voyage of the Samarang,' tend to prove that the shell is construeted by the female Argonaut as a nest for reeeiving her eggs, and protecting them frominjury, resembling in some measure the rudimental eapsules seereted by many marine Gastropods for the preservation of the embryo. The animal firmly retains possession of this light ealeareous shell-nest by means of the broad expanded membranes of the posterior pair of tentaeles; but when disturbed or eaptured, she loosens her hold, and leaving her eradle to its fate, swims about independent of her shell. Having onee deserted the nest, it appears that she has not the power, or more properly the sagacity, to re-enter it. Numbers of male Argonauts were taken by Mr. Adams, but always without shells. There are, however, in this theory, diffieulties whiel probably future observation may explain. In the first place, the shells

[^24]: are found in different stages of growth, and they always exhibit the usual indications of successive periodic enlargements. Again, Mr. Adams states, "that it does not appear that the female is able to exist long when disengaged from the shell." How ean these facts be reconciled with the theory that the shell is a mere nidus?

 * MM. de Blainville and d'Orbigny have founded on these remains two genera, which they have named Conchorhyncus and Rhyncoteuthis. The reasons advanced for supposing that the Rhyncolites were not the mandibles of any of the Nautilidæ or Ammonitidæ already known, are far from conelusive; and these genera can only be regarded as arbitrary, though perhaps convenient, divisions, aceording to the peculiar forms presented by the remains.

[^25]: * In this opinion M. de Blainville concurs (Mémoirc sur l'Animal de la Spirula, \&c.), and he shows that a similar mode is used by the Spirula; the altcration of the specific gravity being effceted by the withdrawal of the cephalic mass into a cavity formed by the upper portion of the body.

[^26]: * Professor Owen, speaking of the specimen of Spirula Peronii (fragilis), brought home by Sir Edward Belcher, says: "On gently raising the exposed portion of the siphon with a needle, the soft siphon was withdrawn, without sensible resistanee, from the tube of the hard siphon; the siphon so withdrawn must have reaehed nearly to the innermost whorl. It exhibited a slight segmentation, answering to the suecessively sheathed parts of the ealeareous siphon."

[^27]: * I am wholly indebted to my friend Mr. Searles Wood for the following theory as to the siphuncular function, and the main arguments in support of it. The well-known conchological attainments of that gentleman exact respect for every opinion of his on subjects like the present; but independently of this, the theory itself scems to me to be far more probable than any hitherto advanced as to the office of the siphon; and I therefore gladly avail myself of Mr. Wood's permission to introduce his vicws of the subject into my tcxt.

[^28]: * Memoir on the Nautilus Pompilius, p. 47.

[^29]: * Yon Hauer (Nene Cephalopoden aus dem rothen Marmor von Aussee), describes several Orthoceratites associated with Goniatites in the schistose beds of St. Cassian; those beds, I believe, are now generally considered to belong to the Muschelkalk.
 \dagger The remains described by Goldfuss and Bronn as Spirule, appear to belong to Gyroceras, a genus of the Nautilide.

[^30]: * Sce Dr. Buckland's Bridgewater Treatise, vol. i, chap. xp.

[^31]: * The term Belosepion is uscd here to describe the entire internal shell of the Belosepia; in the same way as the term Sepion (Sepiostaire of De Blainville) is used by English writers to describe the internal shell of the Sepia, or what is usually known as "Cuttlefish-bone."

[^32]: * The word alveolus is used by this author in its original meaning, and is applied to the ehambered eone whieh Professor Owen has named the phragmocone. The term alveolus has been with greater propriety restrieted by the latter gentleman to the eavity in which the phragmocone was lodged.

[^33]: * In stating the size of the shells I have used tenth parts of an inch, in order to facilitate a comparison with the measurements of French shells; as tenths of an inch may be readily, and with sufficient aceuracy, converted into " millimetres" by taking 1 tenth as equal to $2 \frac{1}{2}$ millim. The exact proportion is 30 . millim. $=12$ inehes ; i. c. ${ }^{\circ} \mathrm{in} .=2 \cdot 54166$ \&c. millim.

[^34]: * Etym. Bèє $\mu \nu 0 \nu$, telum ; evwfis, conjunctio.

[^35]: B. testâ oblongo-elonyatâ, supra convexâ, umbone obtusissimo, lateraliter compresso, et deorsum leviter inflecto terminatâ: marginibus ventralibus anticè depressis, posticè sub-convexis, facies externas acutas, internas, obliquè triplicatas, prabentibus: foramine umbonali circulari.

[^36]: * M. Valenciennes states the number to be seventeen.
 + The identification of the species in the Miocene formations of Turin cannot be relied upon.

[^37]: * Etym. Aturrus rel Aturus-the River Adour.

[^38]: * Conrad's "Observations on the Eocene formation, and description of one hundred and five new fossils of that period, from the vicinity of Vicksburg, Mississippi," published in the Journal of the Academy of Natural Science of Philadelphia.

